Definitions graph 1 1 Graphs Doc

Defined Operators mentioned in graph 1 1

Defunion-reduce(f;g;x;as)[union-reduce]
Def < x,y > .P(x;y)[plambda]
Defl_disjoint(T;l1;l2)[l_disjoint]mb list 2
Def(x l)[l_member]mb list 1
Defx before y l[l_before]mb list 1
DefL1 L2[sublist]mb list 1
Defno_repeats(T;l)[no_repeats]mb list 2
Defl[i][select]list 1
Def||as||[length]list 1
Defincreasing(f;k)[increasing]mb basic
Def{i..j}[int_seg]int 1
Def(xL.P(x))[l_ball]
Defb[assert]bool 1
DefP Q[iff]core
Def[bool]bool 1
Defx:A. B(x)[all]core
Defx:A. B(x)[exists]core
Def(xL.P(x))[l_bexists]
DefP & Q[and]core
Defrev(as)[reverse]list 1
Defas @ bs[append]list 1
Def[nat]int 1
Def{i...j}[int_iseg]int 1
Defi j < k[lelt]int 1
DefAB[le]core
DefP Q[implies]core
Def{T}[guard]core
Defupto(i;j)[upto]
DefDec(P)[decidable]core
DefInvFuns(A; B; f; g)[inv_funs]fun 1
Deff o g[compose]fun 1
Def(f1,f2) o g[compose2]
DefId[tidentity]fun 1
DefId[identity]fun 1
DefBij(A; B; f)[biject]fun 1
Deffirstn(n;as)[firstn]list 1
Defmapoutl(s)[mapoutl]
Defmapfilter(f;P;L)[mapfilter]mb list 2
Defmap(f;as)[map]list 1
DefTop[top]core
Defnth_tl(n;as)[nth_tl]list 1
Def[int_nzero]int 1
Defa b[nequal]core
DefA[not]core
DefP Q[or]core
Defprocess u j where process s i == if P(i;s) then F(i;s) else G(i;s) where xs := N(i;s); s:= H(i;s); while not null xs { s := process s (hd xs); xs := tl xs; } [accumulate]
DefProp[prop]core
Defsum(f(x) | x < k)[sum]mb nat
Defprimrec(n;b;c)[primrec]mb nat
Deffilter(P;l)[filter]mb list 1
DefInj(A; B; f)[inject]fun 1
DefA & B[cand]core
Def|i|[absval]int 2
Deff91(i)[f91]
Defi > j[gt]core
Defa mod n[modulus]int 2
Defa n[div_floor]int 2
Def[nat_plus]int 1
Defi=j[eq_int]bool 1
Deftrue[btrue]bool 1
Defpq[band]bool 1
Defreduce(f;k;as)[reduce]list 1
Deffalse[bfalse]bool 1
Defp q[bor]bool 1
Defij[le_int]bool 1
Defi < j[lt_int]bool 1
Defif b t else f fi[ifthenelse]bool 1
DefY[ycomb]core
Def2of(t)[pi2]core
Def1of(t)[pi1]core
Deflist_accum(x,a.f(x;a);y;l)[list_accum]mb list 1
Defisl(x)[isl]union
Defoutl(x)[outl]union
Defhd(l)[hd]list 1
DefP Q[rev_implies]core
DefSurj(A; B; f)[surject]fun 1
Deftl(l)[tl]list 1
Defb[bnot]bool 1

About:
pairspreadspreadspreadproductproductconsconsnil
list_indboolbfalsebtrueifthenelse
assertdecidableunititvoidintnatural_numberminusaddsubtractdivideremainder
int_eqlessless_thantokenunioninlinr
decidesetisectlambdaapply
functionycombuniverseequaltoppropimpliesandorfalsetrue
allexists

Definitions graph 1 1 Graphs Doc