Graphs NuprlLIB Doc

Defined Operators mentioned in Graphs

Deft.eqw[gro_eqw]graph 1 3
Deft.eaccw[gro_eaccw]graph 1 3
Deft.vaccw[gro_vaccw]graph 1 3
Deft.other[gro_other]graph 1 3
DefFor any graph representation P(the_graph;the_obj)[allgrep]graph 1 3
Defadjm-rep{\\\\v:l,i:l}()[adjm-rep]graph 1 3
DefAdjListRep[adjl-rep]graph 1 3
Defadjl_to_adjm(l)[adjl_to_adjm]graph 1 3
Defarray[n]:=v[array-const]graph 1 2
Deft.o[gr_o]graph 1 2
Defunion-reduce(f;g;x;as)[union-reduce]graph 1 1
Defvertex-count(the_obj;x.P(x))[vertex-count]graph 1 3
DefDec(P)[decidable]core
Defl_disjoint(T;l1;l2)[l_disjoint]mb list 2
DefProp[prop]core
Defdepthfirst-traversal(the_graph;s)[depthfirst-traversal]graph 1 2
Deftopsort(G)[topsort]graph 1 3
Deftopsorted(the_graph;s)[topsorted]graph 1 2
Defnon-trivial-loop-free(G)[non-trivial-loop-free]graph 1 2
Defdfl-traversal(the_graph;L;s)[dfl-traversal]graph 1 2
Defdfsl-traversal(the_graph;L;s)[dfsl-traversal]graph 1 2
Deftopsortl(A;L)[topsortl]graph 1 3
Deftopsortedl(the_graph;L;s)[topsortedl]graph 1 2
Defadjm_to_adjl(m)[adjm_to_adjl]graph 1 3
DefG H[graph-isomorphic]graph 1 2
Defmod_guard(x;y)[mod_guard]graph 1 2
Defprime(a)[prime]num thy 1
Def[int_nzero]int 1
Deff[n:=x][fappend]mb nat
DefBij(A; B; f)[biject]fun 1
DefInj(A; B; f)[inject]fun 1
Defi > j[gt]core
Defr- > L^k[arrows]graph 1 2
DefL[i--][list-dec]graph 1 2
Def{T}[guard]core
Defmember-right-paren(x,y.E(x;y);i;s)[member-right-paren]graph 1 2
Defmember-left-paren(x,y.E(x;y);i;s)[member-left-paren]graph 1 2
Defa[i:=v][array-update]graph 1 2
Defarray(T)[array]graph 1 2
Defarray-count(v.P(v);a)[array-count]graph 1 2
DefL1-G- > *L2[list-list-connect]graph 1 2
Defx before y l[l_before]mb list 1
DefL1 L2[sublist]mb list 1
DefGraph Representation[graphrep]graph 1 3
DefGraphObject(the_graph)[graphobj]graph 1 3
Defno_repeats(T;l)[no_repeats]mb list 2
DefL-G- > *x[list-connect]graph 1 2
Def(xL.P(x))[l_exists]mb list 2
Def(xL.P(x))[l_all]mb list 2
Defdf-traversal(G;s)[df-traversal]graph 1 2
Def(x l)[l_member]mb list 1
Defadjl-graph(G)[adjl-graph]graph 1 3
Defnon-trivial-loop(G;i)[non-trivial-loop]graph 1 2
Defx-the_graph- > *y[connect]graph 1 2
Deflast(L)[last]mb list 1
Defpath(the_graph;p)[path]graph 1 2
Defl[i][select]list 1
Defnth_tl(n;as)[nth_tl]list 1
Deftl(l)[tl]list 1
Defl1 l2[iseg]mb list 1
DefEquivRel x,y:T. E(x;y)[equiv_rel]rel 1
DefDivGraph_2[divides-graph2]graph 1 2
DefDivGraph_1[divides-graph1]graph 1 2
Def(xL.P(x))[l_ball]graph 1 1
DefInvFuns(A; B; f; g)[inv_funs]fun 1
DefGraph(x,y:T. R(x;y))[rel-graph]graph 1 2
DefId[tidentity]fun 1
DefId[identity]fun 1
Deffirstn(n;as)[firstn]list 1
Def{i...j}[int_iseg]int 1
Defprocess u j where process s i == if P(i;s) then F(i;s) else G(i;s) where xs := N(i;s); s:= H(i;s); while not null xs { s := process s (hd xs); xs := tl xs; } [accumulate]graph 1 1
Defrev(as)[reverse]list 1
Def|i|[absval]int 2
Deff91(i)[f91]graph 1 1
Defa n[div_floor]int 2
DefGraph[graph]graph 1 2
DefTop[top]core
Defdfsl(G;L)[dfsl]graph 1 3
Defadjl-obj{\\\\v:l,i:l}(A)[adjl-obj]graph 1 3
Defadjl-edge-accum(A;s',x'.f(s';x');s;x)[adjl-edge-accum]graph 1 3
Deflist_accum(x,a.f(x;a);y;l)[list_accum]mb list 1
Defx-the_graph- > y[edge]graph 1 2
DefP & Q[and]core
Defx:A. B(x)[exists]core
Defadjm-graph(A)[adjm-graph]graph 1 3
Defb[assert]bool 1
DefP Q[iff]core
Defx:A. B(x)[all]core
Def[bool]bool 1
Deftraversal(G)[traversal]graph 1 2
DefVertices(t)[gr_v]graph 1 2
Defvertex-subset(the_obj;x.P(x))[vertex-subset]graph 1 3
Defdepthfirst(the_obj)[depthfirst]graph 1 3
Deft.vacc[gro_vacc]graph 1 3
Deft.graph[grr_graph]graph 1 3
Deft.type[grr_type]graph 1 3
Defdfs(the_obj;s;i)[dfs]graph 1 3
Deft.eacc[gro_eacc]graph 1 3
Deft.eq[gro_eq]graph 1 3
Defadjm-obj{\\\\v:l,i:l}(M)[adjm-obj]graph 1 3
Defadjm-vertex-accum(M;s',x.f(s';x);s)[adjm-vertex-accum]graph 1 3
Defadjm-edge-accum(M;s',x'.f(s';x');s;x)[adjm-edge-accum]graph 1 3
Deft.size[adjm_size]graph 1 3
Defadjl-vertex-accum(A;s',x.f(s';x);s)[adjl-vertex-accum]graph 1 3
Deft.size[adjl_size]graph 1 3
Def|a|[array-length]graph 1 2
DefIncidence(t)[gr_f]graph 1 2
DefEdges(t)[gr_e]graph 1 2
Def < x,y > .P(x;y)[plambda]graph 1 1
DefGraph(a:A -- > f(a;b) | b:B)[fun-graph]graph 1 2
Def1of(t)[pi1]core
Deft.obj[grr_obj]graph 1 3
Deft.adj[adjm_adj]graph 1 3
Deft.out[adjl_out]graph 1 3
Defa[i][array-select]graph 1 2
Def2of(t)[pi2]core
Defif b t else f fi[ifthenelse]bool 1
Defparen(T;s)[paren]graph 1 2
Def||as||[length]list 1
Defmember-paren(x,y.E(x;y);i;s)[member-paren]graph 1 2
DefY[ycomb]core
Defmapoutl(s)[mapoutl]graph 1 1
DefAdjMatrix[adjmatrix]graph 1 3
DefAdjList[adjlist]graph 1 3
Defincreasing(f;k)[increasing]mb basic
Def{i..j}[int_seg]int 1
Def[nat]int 1
Def[it]core
Def < vertices = v, edges = e, incidence = f > [mkgraph]graph 1 2
Defmklist(n;f)[mklist]mb list 1
Defsum(f(x) | x < k)[sum]mb nat
Defprimrec(n;b;c)[primrec]mb nat
Defx =M= y[eq_adjm]graph 1 3
Defx =A= y[eq_adjl]graph 1 3
Defa mod n[modulus]int 2
Defi=j[eq_int]bool 1
Defmkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other)[mkgraphobj]graph 1 3
Defmkgraphrep(type, graph, obj)[mkgraphrep]graph 1 3
Defupto(i;j)[upto]graph 1 1
Defmapfilter(f;P;L)[mapfilter]mb list 2
Deffilter(P;l)[filter]mb list 1
Defmk_adjlist(size, out)[mk_adjlist]graph 1 3
DefCase mk_adjmatrix(size,adj) = > body(size;adj)[case_mk_adjmatrix]graph 1 3
DefCase(value) body[case]prog 1
Def(xL.P(x))[l_bexists]graph 1 1
Defmk_adjmatrix(size, adj)[mk_adjmatrix]graph 1 3
DefCase mk_adjlist(size; out ) = > body(size;out)[case_mk_adjlist]graph 1 3
Defmap(f;as)[map]list 1
DefA & B[cand]core
Defi j < k[lelt]int 1
DefAB[le]core
DefP Q[implies]core
Defas @ bs[append]list 1
DefP Q[or]core
Deffalse[bfalse]bool 1
Defa b[nequal]core
DefA[not]core
Deff o g[compose]fun 1
Def(f1,f2) o g[compose2]graph 1 1
Defa ~ b[assoced]num thy 1
Defb | a[divides]num thy 1
Def[nat_plus]int 1
Deftrue[btrue]bool 1
Defpq[band]bool 1
Defreduce(f;k;as)[reduce]list 1
Defp q[bor]bool 1
Defij[le_int]bool 1
Defi < j[lt_int]bool 1
Defisl(x)[isl]union
Defoutl(x)[outl]union
DefTrans x,y:T. E(x;y)[trans]rel 1
DefSym x,y:T. E(x;y)[sym]rel 1
DefRefl(T;x,y.E(x;y))[refl]rel 1
DefP Q[rev_implies]core
Defhd(l)[hd]list 1
DefSurj(A; B; f)[surject]fun 1
Defb[bnot]bool 1

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelseassert
decidableunititvoidintnatural_numberminusaddsubtractmultiplydivideremainder
int_eqlessless_thantokenunioninlinr
decidesetisectisectlambda
applyfunctionycombuniverseequalaxiomtoppropimpliesandorfalsetrue
allexists

Graphs NuprlLIB Doc