WhoCites Definitions graph 1 3 Sections Graphs Doc

Who Cites adjl-rep?
adjl-repDef AdjListRep == mkgraphrep(AdjList, A.adjl-graph(A), A.adjl-obj{\\\\v:l,i:l}(A))
adjl-obj Def adjl-obj{\\\\v:l,i:l}(A) == mkgraphobj(x,y. x =A= y, ext{assert_eq_adjl}(A), f,s,x. adjl-edge-accum(A;s',x'.f(s',x');s;x), ext{adjl_DASH_edge_DASH_accum_DASH_properties}{i:l}(A), f,s. adjl-vertex-accum(A;s',x'.f(s',x');s), ext{adjl_DASH_vertex_DASH_accum_DASH_properties}{i:l}(A), )
adjl-graph Def adjl-graph(G) == < vertices = G.size, edges = x:G.size||G.out(x)||, incidence = e. < 1of(e),(G.out(1of(e)))[2of(e)] > >
adjlist Def AdjList == size:size(size List)
Thm* AdjList Type
mkgraphrep Def mkgraphrep(type, graph, obj) == < type,graph,obj >
Thm* type:Type, graph:(typeGraph), obj:(r:typeGraphObject(graph(r))). mkgraphrep(type, graph, obj) Graph Representation
adjl-vertex-accum Def adjl-vertex-accum(A;s',x.f(s';x);s) == primrec(A.size;s;x,s'. f(s';x))
adjl-edge-accum Def adjl-edge-accum(A;s',x'.f(s';x');s;x) == list_accum(s',x'.f(s';x');s;A.out(x))
eq_adjl Def x =A= y == x=y
Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y
mkgraphobj Def mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) == < eq,eqw,eacc,eaccw,vacc,vaccw,other >
Thm* For any graph eq:(VV), eqw:(x,y:V. eq(x,y) x = y), eacc:(T:Type. (TVT)TVT), eaccw:(T:Type, s:T, x:V, f:(TVT). L:V List. (y:V. x-the_graph- > y (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)), vacc:(T:Type. (TVT)TT), vaccw:(T:Type, s:T, f:(TVT). L:V List. no_repeats(V;L) & (y:V. (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)), other:Top. mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) GraphObject(the_graph)
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
mkgraph Def < vertices = v, edges = e, incidence = f > == < v,e,f,o >
Thm* v,e:Type, f:(evv), o:Top. < vertices = v, edges = e, incidence = f > Graph
nat Def == {i:| 0i }
Thm* Type
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
Thm* T,T':Type, l:T List, y:T', f:(T'TT'). list_accum(x,a.f(x,a);y;l) T'
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
not Def A == A False
Thm* A:Prop. (A) Prop
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b

Syntax:AdjListRep has structure: adjl-rep{\\v:l,i:l}

About:
pairspreadspreadproductproductlistnil
list_indboolbfalsebtrue
ifthenelseassertitintnatural_numberaddsubtractint_eq
lessless_thantokensetisectlambda
applyfunctionrecursive_def_noticeuniverseequalmembertopprop
impliesandfalseallexists!abstraction

WhoCites Definitions graph 1 3 Sections Graphs Doc