WhoCites Definitions graph 1 3 Sections Graphs Doc

Who Cites adjl-graph?
adjl-graphDef adjl-graph(G) == < vertices = G.size, edges = x:G.size||G.out(x)||, incidence = e. < 1of(e),(G.out(1of(e)))[2of(e)] > >
adjl_size Def t.size == 1of(t)
Thm* t:AdjList. t.size
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
adjl_out Def t.out == 2of(t)
Thm* t:AdjList. t.out t.size(t.size List)
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
mkgraph Def < vertices = v, edges = e, incidence = f > == < v,e,f,o >
Thm* v,e:Type, f:(evv), o:Top. < vertices = v, edges = e, incidence = f > Graph
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
lelt Def i j < k == ij & j < k
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
le Def AB == B < A
Thm* i,j:. (ij) Prop
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
not Def A == A False
Thm* A:Prop. (A) Prop

About:
pairspreadspreadproductproductlistnillist_ind
boolbfalsebtrueifthenelseitintnatural_numberaddsubtractless
less_thantokensetlambdaapplyfunctionrecursive_def_notice
universemembertoppropimpliesandfalseall!abstraction

WhoCites Definitions graph 1 3 Sections Graphs Doc