Definitions graph 1 3 Graphs Doc

Defined Operators mentioned in graph 1 3

Deft.eqw[gro_eqw]
Deft.eaccw[gro_eaccw]
Deft.vaccw[gro_vaccw]
Deft.other[gro_other]
DefFor any graph representation P(the_graph;the_obj)[allgrep]
Defadjm-rep{\\\\v:l,i:l}()[adjm-rep]
DefAdjListRep[adjl-rep]
Defadjl_to_adjm(l)[adjl_to_adjm]
Defvertex-count(the_obj;x.P(x))[vertex-count]
Defl_disjoint(T;l1;l2)[l_disjoint]mb list 2
Defdfsl-traversal(the_graph;L;s)[dfsl-traversal]graph 1 2
Defdf-traversal(G;s)[df-traversal]graph 1 2
Defdepthfirst-traversal(the_graph;s)[depthfirst-traversal]graph 1 2
Deftopsorted(the_graph;s)[topsorted]graph 1 2
Defnon-trivial-loop-free(G)[non-trivial-loop-free]graph 1 2
Defdfl-traversal(the_graph;L;s)[dfl-traversal]graph 1 2
Deftopsortedl(the_graph;L;s)[topsortedl]graph 1 2
Defnon-trivial-loop(G;i)[non-trivial-loop]graph 1 2
DefL-G- > *x[list-connect]graph 1 2
Defx-the_graph- > *y[connect]graph 1 2
Def(xL.P(x))[l_all]mb list 2
DefGraph Representation[graphrep]
DefGraphObject(the_graph)[graphobj]
Defno_repeats(T;l)[no_repeats]mb list 2
Def(xL.P(x))[l_exists]mb list 2
Def(x l)[l_member]mb list 1
Defadjm-graph(A)[adjm-graph]
DefAdjMatrix[adjmatrix]
Defadjl-graph(G)[adjl-graph]
DefAdjList[adjlist]
Defpath(the_graph;p)[path]graph 1 2
Defx before y l[l_before]mb list 1
DefL1 L2[sublist]mb list 1
Defincreasing(f;k)[increasing]mb basic
Def{i..j}[int_seg]int 1
Def[nat]int 1
Defi j < k[lelt]int 1
DefAB[le]core
DefP Q[implies]core
DefDec(P)[decidable]core
DefA[not]core
Deftraversal(G)[traversal]graph 1 2
Defparen(T;s)[paren]graph 1 2
Defas @ bs[append]list 1
DefProp[prop]core
DefP Q[or]core
Deftopsort(G)[topsort]
Deftopsortl(A;L)[topsortl]
Defadjm_to_adjl(m)[adjm_to_adjl]
DefG H[graph-isomorphic]graph 1 2
DefGraph[graph]graph 1 2
DefTop[top]core
Defdfsl(G;L)[dfsl]
Defadjl-obj{\\\\v:l,i:l}(A)[adjl-obj]
Defadjl-edge-accum(A;s',x'.f(s';x');s;x)[adjl-edge-accum]
Deflist_accum(x,a.f(x;a);y;l)[list_accum]mb list 1
Defx-the_graph- > y[edge]graph 1 2
DefP & Q[and]core
Defx:A. B(x)[exists]core
Defb[assert]bool 1
DefP Q[iff]core
Defx:A. B(x)[all]core
Def[bool]bool 1
DefVertices(t)[gr_v]graph 1 2
Defvertex-subset(the_obj;x.P(x))[vertex-subset]
Defdepthfirst(the_obj)[depthfirst]
Deft.vacc[gro_vacc]
Deft.graph[grr_graph]
Deft.type[grr_type]
Defdfs(the_obj;s;i)[dfs]
Deft.eacc[gro_eacc]
Deft.eq[gro_eq]
Defadjm-obj{\\\\v:l,i:l}(M)[adjm-obj]
Defadjm-vertex-accum(M;s',x.f(s';x);s)[adjm-vertex-accum]
Defadjm-edge-accum(M;s',x'.f(s';x');s;x)[adjm-edge-accum]
Deft.size[adjm_size]
Defadjl-vertex-accum(A;s',x.f(s';x);s)[adjl-vertex-accum]
Deft.size[adjl_size]
DefIncidence(t)[gr_f]graph 1 2
DefEdges(t)[gr_e]graph 1 2
Def1of(t)[pi1]core
Deft.obj[grr_obj]
Deft.adj[adjm_adj]
Deft.out[adjl_out]
Def2of(t)[pi2]core
Defif b t else f fi[ifthenelse]bool 1
Deflast(L)[last]mb list 1
Def||as||[length]list 1
Defmember-paren(x,y.E(x;y);i;s)[member-paren]graph 1 2
DefY[ycomb]core
Defmapoutl(s)[mapoutl]graph 1 1
Def[it]core
Def < vertices = v, edges = e, incidence = f > [mkgraph]graph 1 2
Defprimrec(n;b;c)[primrec]mb nat
Defx =M= y[eq_adjm]
Defx =A= y[eq_adjl]
Defi=j[eq_int]bool 1
Defmkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other)[mkgraphobj]
Defmkgraphrep(type, graph, obj)[mkgraphrep]
Defl[i][select]list 1
Defupto(i;j)[upto]graph 1 1
Defmapfilter(f;P;L)[mapfilter]mb list 2
Deffilter(P;l)[filter]mb list 1
Defmk_adjlist(size, out)[mk_adjlist]
DefCase mk_adjmatrix(size,adj) = > body(size;adj)[case_mk_adjmatrix]
DefCase(value) body[case]prog 1
Def(xL.P(x))[l_bexists]graph 1 1
Defmk_adjmatrix(size, adj)[mk_adjmatrix]
DefCase mk_adjlist(size; out ) = > body(size;out)[case_mk_adjlist]
Deff o g[compose]fun 1
Def(f1,f2) o g[compose2]graph 1 1
DefBij(A; B; f)[biject]fun 1
DefP Q[rev_implies]core
Defisl(x)[isl]union
Defoutl(x)[outl]union
Defnth_tl(n;as)[nth_tl]list 1
Defhd(l)[hd]list 1
Defij[le_int]bool 1
Defi < j[lt_int]bool 1
Defreduce(f;k;as)[reduce]list 1
Defp q[bor]bool 1
DefSurj(A; B; f)[surject]fun 1
DefInj(A; B; f)[inject]fun 1
Defmap(f;as)[map]list 1
Deftl(l)[tl]list 1
Defb[bnot]bool 1

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertdecidableunititvoidintnatural_numberaddsubtractint_eq
lessless_thantokenunioninlinr
decidesetisectisect
lambdaapplyfunctionycombuniverseequalaxiomtoppropimpliesandor
falsetrueallexists

Definitions graph 1 3 Graphs Doc