Def | | t.eqw | [gro_eqw] |
Def | | t.eaccw | [gro_eaccw] |
Def | | t.vaccw | [gro_vaccw] |
Def | | t.other | [gro_other] |
Def | | For any graph representation
P(the_graph;the_obj) | [allgrep] |
Def | | adjm-rep{\\\\v:l,i:l}() | [adjm-rep] |
Def | | AdjListRep | [adjl-rep] |
Def | | adjl_to_adjm(l) | [adjl_to_adjm] |
Def | | vertex-count(the_obj;x.P(x)) | [vertex-count] |
Def | | l_disjoint(T;l1;l2) | [l_disjoint] | mb list 2 |
Def | | dfsl-traversal(the_graph;L;s) | [dfsl-traversal] | graph 1 2 |
Def | | df-traversal(G;s) | [df-traversal] | graph 1 2 |
Def | | depthfirst-traversal(the_graph;s) | [depthfirst-traversal] | graph 1 2 |
Def | | topsorted(the_graph;s) | [topsorted] | graph 1 2 |
Def | | non-trivial-loop-free(G) | [non-trivial-loop-free] | graph 1 2 |
Def | | dfl-traversal(the_graph;L;s) | [dfl-traversal] | graph 1 2 |
Def | | topsortedl(the_graph;L;s) | [topsortedl] | graph 1 2 |
Def | | non-trivial-loop(G;i) | [non-trivial-loop] | graph 1 2 |
Def | | L-G- > *x | [list-connect] | graph 1 2 |
Def | | x-the_graph- > *y | [connect] | graph 1 2 |
Def | | ( x L.P(x)) | [l_all] | mb list 2 |
Def | | Graph Representation | [graphrep] |
Def | | GraphObject(the_graph) | [graphobj] |
Def | | no_repeats(T;l) | [no_repeats] | mb list 2 |
Def | | ( x L.P(x)) | [l_exists] | mb list 2 |
Def | | (x l) | [l_member] | mb list 1 |
Def | | adjm-graph(A) | [adjm-graph] |
Def | | AdjMatrix | [adjmatrix] |
Def | | adjl-graph(G) | [adjl-graph] |
Def | | AdjList | [adjlist] |
Def | | path(the_graph;p) | [path] | graph 1 2 |
Def | | x before y l | [l_before] | mb list 1 |
Def | | L1 L2 | [sublist] | mb list 1 |
Def | | increasing(f;k) | [increasing] | mb basic |
Def | | {i..j } | [int_seg] | int 1 |
Def | |  | [nat] | int 1 |
Def | | i j < k | [lelt] | int 1 |
Def | | A B | [le] | core |
Def | | P  Q | [implies] | core |
Def | | Dec(P) | [decidable] | core |
Def | | A | [not] | core |
Def | | traversal(G) | [traversal] | graph 1 2 |
Def | | paren(T;s) | [paren] | graph 1 2 |
Def | | as @ bs | [append] | list 1 |
Def | | Prop | [prop] | core |
Def | | P Q | [or] | core |
Def | | topsort(G) | [topsort] |
Def | | topsortl(A;L) | [topsortl] |
Def | | adjm_to_adjl(m) | [adjm_to_adjl] |
Def | | G H | [graph-isomorphic] | graph 1 2 |
Def | | Graph | [graph] | graph 1 2 |
Def | | Top | [top] | core |
Def | | dfsl(G;L) | [dfsl] |
Def | | adjl-obj{\\\\v:l,i:l}(A) | [adjl-obj] |
Def | | adjl-edge-accum(A;s',x'.f(s';x');s;x) | [adjl-edge-accum] |
Def | | list_accum(x,a.f(x;a);y;l) | [list_accum] | mb list 1 |
Def | | x-the_graph- > y | [edge] | graph 1 2 |
Def | | P & Q | [and] | core |
Def | | x:A. B(x) | [exists] | core |
Def | | b | [assert] | bool 1 |
Def | | P  Q | [iff] | core |
Def | | x:A. B(x) | [all] | core |
Def | |  | [bool] | bool 1 |
Def | | Vertices(t) | [gr_v] | graph 1 2 |
Def | | vertex-subset(the_obj;x.P(x)) | [vertex-subset] |
Def | | depthfirst(the_obj) | [depthfirst] |
Def | | t.vacc | [gro_vacc] |
Def | | t.graph | [grr_graph] |
Def | | t.type | [grr_type] |
Def | | dfs(the_obj;s;i) | [dfs] |
Def | | t.eacc | [gro_eacc] |
Def | | t.eq | [gro_eq] |
Def | | adjm-obj{\\\\v:l,i:l}(M) | [adjm-obj] |
Def | | adjm-vertex-accum(M;s',x.f(s';x);s) | [adjm-vertex-accum] |
Def | | adjm-edge-accum(M;s',x'.f(s';x');s;x) | [adjm-edge-accum] |
Def | | t.size | [adjm_size] |
Def | | adjl-vertex-accum(A;s',x.f(s';x);s) | [adjl-vertex-accum] |
Def | | t.size | [adjl_size] |
Def | | Incidence(t) | [gr_f] | graph 1 2 |
Def | | Edges(t) | [gr_e] | graph 1 2 |
Def | | 1of(t) | [pi1] | core |
Def | | t.obj | [grr_obj] |
Def | | t.adj | [adjm_adj] |
Def | | t.out | [adjl_out] |
Def | | 2of(t) | [pi2] | core |
Def | | if b t else f fi | [ifthenelse] | bool 1 |
Def | | last(L) | [last] | mb list 1 |
Def | | ||as|| | [length] | list 1 |
Def | | member-paren(x,y.E(x;y);i;s) | [member-paren] | graph 1 2 |
Def | | Y | [ycomb] | core |
Def | | mapoutl(s) | [mapoutl] | graph 1 1 |
Def | |  | [it] | core |
Def | | < vertices = v, edges = e, incidence = f > | [mkgraph] | graph 1 2 |
Def | | primrec(n;b;c) | [primrec] | mb nat |
Def | | x =M= y | [eq_adjm] |
Def | | x =A= y | [eq_adjl] |
Def | | i= j | [eq_int] | bool 1 |
Def | | mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) | [mkgraphobj] |
Def | | mkgraphrep(type, graph, obj) | [mkgraphrep] |
Def | | l[i] | [select] | list 1 |
Def | | upto(i;j) | [upto] | graph 1 1 |
Def | | mapfilter(f;P;L) | [mapfilter] | mb list 2 |
Def | | filter(P;l) | [filter] | mb list 1 |
Def | | mk_adjlist(size, out) | [mk_adjlist] |
Def | | Case mk_adjmatrix(size,adj) = >
body(size;adj) | [case_mk_adjmatrix] |
Def | | Case(value)
body | [case] | prog 1 |
Def | | ( x L.P(x)) | [l_bexists] | graph 1 1 |
Def | | mk_adjmatrix(size, adj) | [mk_adjmatrix] |
Def | | Case mk_adjlist(size; out ) = >
body(size;out) | [case_mk_adjlist] |
Def | | f o g | [compose] | fun 1 |
Def | | (f1,f2) o g | [compose2] | graph 1 1 |
Def | | Bij(A; B; f) | [biject] | fun 1 |
Def | | P  Q | [rev_implies] | core |
Def | | isl(x) | [isl] | union |
Def | | outl(x) | [outl] | union |
Def | | nth_tl(n;as) | [nth_tl] | list 1 |
Def | | hd(l) | [hd] | list 1 |
Def | | i j | [le_int] | bool 1 |
Def | | i < j | [lt_int] | bool 1 |
Def | | reduce(f;k;as) | [reduce] | list 1 |
Def | | p  q | [bor] | bool 1 |
Def | | Surj(A; B; f) | [surject] | fun 1 |
Def | | Inj(A; B; f) | [inject] | fun 1 |
Def | | map(f;as) | [map] | list 1 |
Def | | tl(l) | [tl] | list 1 |
Def | |  b | [bnot] | bool 1 |