| Who Cites allgrep? |
|
allgrep | Def For any graph representationP(the_graph;the_obj) == R:Graph Representation, r:R.type. P(R.graph(r);R.obj(r)) |
| | Thm* P:(g:Graph GraphObject(g) Prop{i}). allgrep{i:l}(the_graph,the_obj.P(the_graph,the_obj)) Prop{i'} |
|
grr_obj | Def t.obj == 2of(2of(t)) |
| | Thm* t:Graph Representation. t.obj r:t.type GraphObject(t.graph(r)) |
|
grr_graph | Def t.graph == 1of(2of(t)) |
| | Thm* t:Graph Representation. t.graph t.type Graph |
|
grr_type | Def t.type == 1of(t) |
| | Thm* t:Graph Representation. t.type Type |
|
graphrep | Def Graph Representation == type:Type graph:type Graph r:type GraphObject(graph(r)) |
| | Thm* Graph Representation Type{i'} |
|
graphobj | Def GraphObject(the_graph) == eq:Vertices(the_graph) Vertices(the_graph)   ( x,y:Vertices(the_graph). (eq(x,y))  x = y) (eacc:( T:Type. (T Vertices(the_graph) T) T Vertices(the_graph) T) ( T:Type, s:T, x:Vertices(the_graph), f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. ( y:Vertices(the_graph). x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) (vacc:( T:Type. (T Vertices(the_graph) T) T T) ( T:Type, s:T, f:(T Vertices(the_graph) T). L:Vertices(the_graph) List. no_repeats(Vertices(the_graph);L) & ( y:Vertices(the_graph). (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) Top)) |
| | Thm* the_graph:Graph. GraphObject(the_graph) Type{i'} |
|
edge | Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y > |
| | Thm* For any graph
x,y:V. x-the_graph- > y Prop |
|
gr_f | Def Incidence(t) == 1of(2of(2of(t))) |
| | Thm* t:Graph. Incidence(t) Edges(t) Vertices(t) Vertices(t) |
|
gr_e | Def Edges(t) == 1of(2of(t)) |
| | Thm* t:Graph. Edges(t) Type |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
graph | Def Graph == v:Type e:Type (e v v) Top |
| | Thm* Graph Type{i'} |
|
top | Def Top == Void given Void |
| | Thm* Top Type |
|
list_accum | Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive) |
| | Thm* T,T':Type, l:T List, y:T', f:(T' T T'). list_accum(x,a.f(x,a);y;l) T' |
|
l_member | Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
no_repeats | Def no_repeats(T;l) == i,j: . i < ||l||  j < ||l||  i = j  l[i] = l[j] T |
| | Thm* T:Type, l:T List. no_repeats(T;l) Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
rev_implies | Def P  Q == Q  P |
| | Thm* A,B:Prop. (A  B) Prop |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
le_int | Def i j ==  j < i |
| | Thm* i,j: . (i j)  |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |