WhoCites Definitions graph 1 2 Sections Graphs Doc

Who Cites graph-isomorphic?
graph-isomorphicDef G H == vmap:(Vertices(G)Vertices(H)), emap:(Edges(G)Edges(H)). Bij(Vertices(G); Vertices(H); vmap) & Bij(Edges(G); Edges(H); emap) & (vmap,vmap) o Incidence(G) = Incidence(H) o emap
gr_f Def Incidence(t) == 1of(2of(2of(t)))
Thm* t:Graph. Incidence(t) Edges(t)Vertices(t)Vertices(t)
compose Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC
compose2 Def (f1,f2) o g(x) == g(x)/x,y. < f1(x),f2(y) >
Thm* A,B,C,B',C':Type, g:(ABC), f1:(BB'), f2:(CC'). (f1,f2) o g AB'C'
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
gr_e Def Edges(t) == 1of(2of(t))
Thm* t:Graph. Edges(t) Type
biject Def Bij(A; B; f) == Inj(A; B; f) & Surj(A; B; f)
Thm* A,B:Type, f:(AB). Bij(A; B; f) Prop
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
surject Def Surj(A; B; f) == b:B. a:A. f(a) = b
Thm* A,B:Type, f:(AB). Surj(A; B; f) Prop
inject Def Inj(A; B; f) == a1,a2:A. f(a1) = f(a2) B a1 = a2
Thm* A,B:Type, f:(AB). Inj(A; B; f) Prop

Syntax:G H has structure: graph-isomorphic(G; H)

About:
pairspreadspreadspreadproductproductapplyfunctionuniverse
equalmemberpropimpliesandallexists!abstraction

WhoCites Definitions graph 1 2 Sections Graphs Doc