Definitions graph 1 2 Graphs Doc

Defined Operators mentioned in graph 1 2

Defarray[n]:=v[array-const]
Deft.o[gr_o]
Defnon-trivial-loop-free(G)[non-trivial-loop-free]
Deftopsorted(the_graph;s)[topsorted]
Deftopsortedl(the_graph;L;s)[topsortedl]
Defmod_guard(x;y)[mod_guard]
Defprime(a)[prime]num thy 1
Def[int_nzero]int 1
Deff[n:=x][fappend]mb nat
DefG H[graph-isomorphic]
DefBij(A; B; f)[biject]fun 1
DefInj(A; B; f)[inject]fun 1
Defi > j[gt]core
Defr- > L^k[arrows]
DefProp[prop]core
DefL[i--][list-dec]
Def{T}[guard]core
Defmember-paren(x,y.E(x;y);i;s)[member-paren]
Defb[assert]bool 1
Def[bool]bool 1
Defmember-right-paren(x,y.E(x;y);i;s)[member-right-paren]
Defmember-left-paren(x,y.E(x;y);i;s)[member-left-paren]
Defno_repeats(T;l)[no_repeats]mb list 2
DefDec(P)[decidable]core
Defa[i:=v][array-update]
Defarray(T)[array]
Defarray-count(v.P(v);a)[array-count]
DefGraph[graph]
DefL1-G- > *L2[list-list-connect]
Defdepthfirst-traversal(the_graph;s)[depthfirst-traversal]
Defdfl-traversal(the_graph;L;s)[dfl-traversal]
Defdfsl-traversal(the_graph;L;s)[dfsl-traversal]
DefL-G- > *x[list-connect]
Defdf-traversal(G;s)[df-traversal]
Defnon-trivial-loop(G;i)[non-trivial-loop]
Defx-the_graph- > *y[connect]
Deflast(L)[last]mb list 1
Defpath(the_graph;p)[path]
Def(xL.P(x))[l_exists]mb list 2
Def(xL.P(x))[l_all]mb list 2
Def(x l)[l_member]mb list 1
Defx before y l[l_before]mb list 1
DefL1 L2[sublist]mb list 1
Defl[i][select]list 1
Defnth_tl(n;as)[nth_tl]list 1
Deftl(l)[tl]list 1
Defl1 l2[iseg]mb list 1
DefEquivRel x,y:T. E(x;y)[equiv_rel]rel 1
DefDivGraph_2[divides-graph2]
DefDivGraph_1[divides-graph1]
Defa mod n[modulus]int 2
Defmap(f;as)[map]list 1
Defincreasing(f;k)[increasing]mb basic
DefA & B[cand]core
Defx:A. B(x)[exists]core
Defparen(T;s)[paren]
Def||as||[length]list 1
DefP & Q[and]core
Def{i..j}[int_seg]int 1
Def[nat]int 1
Defi j < k[lelt]int 1
DefAB[le]core
DefP Q[implies]core
Defx:A. B(x)[all]core
Defmklist(n;f)[mklist]mb list 1
Defsum(f(x) | x < k)[sum]mb nat
Defprimrec(n;b;c)[primrec]mb nat
Defi=j[eq_int]bool 1
Defif b t else f fi[ifthenelse]bool 1
Defas @ bs[append]list 1
DefP Q[or]core
DefY[ycomb]core
Def(xL.P(x))[l_bexists]graph 1 1
Deffalse[bfalse]bool 1
Def|a|[array-length]
Defx-the_graph- > y[edge]
DefIncidence(t)[gr_f]
Deftraversal(G)[traversal]
DefVertices(t)[gr_v]
DefEdges(t)[gr_e]
Def < x,y > .P(x;y)[plambda]graph 1 1
DefGraph(x,y:T. R(x;y))[rel-graph]
DefGraph(a:A -- > f(a;b) | b:B)[fun-graph]
Def1of(t)[pi1]core
Defa[i][array-select]
Def2of(t)[pi2]core
DefTop[top]core
Defa b[nequal]core
DefA[not]core
DefP Q[iff]core
Deff o g[compose]fun 1
Def(f1,f2) o g[compose2]graph 1 1
Def[it]core
DefId[tidentity]fun 1
Def < vertices = v, edges = e, incidence = f > [mkgraph]
Defa ~ b[assoced]num thy 1
Defb | a[divides]num thy 1
Def[nat_plus]int 1
DefTrans x,y:T. E(x;y)[trans]rel 1
DefSym x,y:T. E(x;y)[sym]rel 1
DefRefl(T;x,y.E(x;y))[refl]rel 1
Defij[le_int]bool 1
Defhd(l)[hd]list 1
Defp q[bor]bool 1
Defreduce(f;k;as)[reduce]list 1
DefP Q[rev_implies]core
DefSurj(A; B; f)[surject]fun 1
DefId[identity]fun 1
Defi < j[lt_int]bool 1
Defb[bnot]bool 1

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertdecidableunititvoidintnatural_numberminusaddsubtractmultiplyremainderint_eq
lessless_thantokenunioninlinr
decidesetisectlambdaapply
functionycombuniverseequalaxiomtoppropimpliesandorfalsetrue
allexists

Definitions graph 1 2 Graphs Doc