WhoCites Definitions graph 1 2 Sections Graphs Doc

Who Cites list-connect?
list-connectDef L-G- > *x == (yL.y-G- > *x)
connect Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y
Thm* For any graph x,y:V. x-the_graph- > *y Prop
path Def path(the_graph;p) == 0 < ||p|| & (i:(||p||-1). p[i]-the_graph- > p[(i+1)])
Thm* For any graph p:V List. path(the_graph;p) Prop
edge Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y >
Thm* For any graph x,y:V. x-the_graph- > y Prop
gr_v Def Vertices(t) == 1of(t)
Thm* t:Graph. Vertices(t) Type
l_exists Def (xL.P(x)) == x:T. (x L) & P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x)) Prop
last Def last(L) == L[(||L||-1)]
Thm* T:Type, L:T List. null(L) last(L) T
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
gr_f Def Incidence(t) == 1of(2of(2of(t)))
Thm* t:Graph. Incidence(t) Edges(t)Vertices(t)Vertices(t)
gr_e Def Edges(t) == 1of(2of(t))
Thm* t:Graph. Edges(t) Type
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
nat Def == {i:| 0i }
Thm* Type
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
not Def A == A False
Thm* A:Prop. (A) Prop

Syntax:L-G- > *x has structure: list-connect(G; L; x)

About:
pairspreadspreadproductproductlistnillist_ind
boolbfalsebtrueifthenelseassertintnatural_numberaddsubtractless
less_thantokensetapplyfunctionrecursive_def_noticeuniverseequal
memberpropimpliesandfalseallexists!abstraction

WhoCites Definitions graph 1 2 Sections Graphs Doc