| Who Cites arrows? |
|
arrows | Def r- > L^k == n: . r n  ( G:({s:( n List)| ||s|| = k & ( x,y: ||s||. x < y  s[x] < s[y]) }  ||L||). c: ||L||, f:( L[c]  n). increasing(f;L[c]) & ( s: L[c] List. ||s|| = k  ( x,y: ||s||. x < y  s[x] < s[y])  G(map(f;s)) = c)) |
| | Thm* r: , k: , L: List. r- > L^k Prop |
|
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
| | Thm* A,B:Type, f:(A B), l:A List. map(f;l) B List |
| | Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
increasing | Def increasing(f;k) == i: (k-1). f(i) < f(i+1) |
| | Thm* k: , f:( k  ). increasing(f;k) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
lelt | Def i j < k == i j & j < k |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
le_int | Def i j ==  j < i |
| | Thm* i,j: . (i j)  |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |