graph 1 2 Sections Graphs Doc

Def r- > L^k == n:. rn (G:({s:(n List)| ||s|| = k & (x,y:||s||. x < y s[x] < s[y]) }||L||). c:||L||, f:(L[c]n). increasing(f;L[c]) & (s:L[c] List. ||s|| = k (x,y:||s||. x < y s[x] < s[y]) G(map(f;s)) = c))

is mentioned by

Thm* k:, L: List. 0 < ||L|| (r:. r- > L^k)[Ramsey]
Thm* r,k:, L,R: List. 2k ||R|| = ||L|| (i:||L||. 0 < L[i] R[i]- > L[i--]^k) r- > R^k-1 r+1- > L^k[Ramsey-recursion]
Thm* L: List. sum(L[i]-1 | i < ||L||)+1- > L^1[Ramsey-base-case]
Thm* k:, L: List, r1,r2:. r1r2 r1- > L^k r2- > L^k[arrows-monotone1]
Thm* k:, L: List. k-1- > L^k (i:||L||. L[i] < k)[trivial-arrows]

Try larger context: Graphs

graph 1 2 Sections Graphs Doc