| Who Cites depthfirst-traversal? |
|
depthfirst-traversal | Def depthfirst-traversal(the_graph;s) == i:Vertices(the_graph), s1,s2:traversal(the_graph). ( j:Vertices(the_graph). i-the_graph- > *j  non-trivial-loop(the_graph;j))  s = (s1 @ [inl(i)] @ s2) traversal(the_graph)  ( j:Vertices(the_graph). j = i  i-the_graph- > *j  (inl(j) s2)) |
|
non-trivial-loop | Def non-trivial-loop(G;i) == j:Vertices(G). j = i & i-G- > *j & j-G- > *i |
|
connect | Def x-the_graph- > *y == p:Vertices(the_graph) List. path(the_graph;p) & p[0] = x & last(p) = y |
| | Thm* For any graph
x,y:V. x-the_graph- > *y Prop |
|
traversal | Def traversal(G) == (Vertices(G)+Vertices(G)) List |
| | Thm* For any graph
Traversal Type |
|
path | Def path(the_graph;p) == 0 < ||p|| & ( i: (||p||-1). p[i]-the_graph- > p[(i+1)]) |
| | Thm* For any graph
p:V List. path(the_graph;p) Prop |
|
edge | Def x-the_graph- > y == e:Edges(the_graph). Incidence(the_graph)(e) = < x,y > |
| | Thm* For any graph
x,y:V. x-the_graph- > y Prop |
|
gr_v | Def Vertices(t) == 1of(t) |
| | Thm* t:Graph. Vertices(t) Type |
|
l_member | Def (x l) == i: . i < ||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
lelt | Def i j < k == i j & j < k |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
| | Thm* T:Type, as,bs:T List. (as @ bs) T List |
|
gr_f | Def Incidence(t) == 1of(2of(2of(t))) |
| | Thm* t:Graph. Incidence(t) Edges(t) Vertices(t) Vertices(t) |
|
gr_e | Def Edges(t) == 1of(2of(t)) |
| | Thm* t:Graph. Edges(t) Type |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
last | Def last(L) == L[(||L||-1)] |
| | Thm* T:Type, L:T List. null(L)  last(L) T |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n: . 0 n  n < ||l||  l[n] A |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l||  |
| | Thm* ||nil||  |
|
nth_tl | Def nth_tl(n;as) == if n 0 as else nth_tl(n-1;tl(as)) fi (recursive) |
| | Thm* A:Type, as:A List, i: . nth_tl(i;as) A List |
|
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
| | Thm* A:Type, l:A List. ||l|| 1  hd(l) A |
| | Thm* A:Type, l:A List . hd(l) A |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |
|
le_int | Def i j ==  j < i |
| | Thm* i,j: . (i j)  |
|
lt_int | Def i < j == if i < j true ; false fi |
| | Thm* i,j: . (i < j)  |
|
bnot | Def  b == if b false else true fi |
| | Thm* b: .  b  |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |