| Who Cites adjm-graph? |
|
adjm-graph | Def adjm-graph(A) == < vertices = A.size, edges = {p:( A.size A.size)| (A.adj(1of(p),2of(p))) }, incidence = e.e > |
|
adjm_adj | Def t.adj == 2of(t) |
| | Thm* t:AdjMatrix. t.adj t.size  t.size   |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
adjm_size | Def t.size == 1of(t) |
| | Thm* t:AdjMatrix. t.size  |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
mkgraph | Def < vertices = v, edges = e, incidence = f > == < v,e,f,o > |
| | Thm* v,e:Type, f:(e v v), o:Top. < vertices = v, edges = e, incidence = f > Graph |
|
lelt | Def i j < k == i j & j < k |
|
le | Def A B == B < A |
| | Thm* i,j: . (i j) Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |