| Who Cites adjl-obj? |
|
adjl-obj | Def adjl-obj{\\\\v:l,i:l}(A) == mkgraphobj( x,y. x =A= y, ext{assert_eq_adjl}(A), f,s,x. adjl-edge-accum(A;s',x'.f(s',x');s;x), ext{adjl_DASH_edge_DASH_accum_DASH_properties}{i:l}(A), f,s. adjl-vertex-accum(A;s',x'.f(s',x');s), ext{adjl_DASH_vertex_DASH_accum_DASH_properties}{i:l}(A), ) |
|
adjl-vertex-accum | Def adjl-vertex-accum(A;s',x.f(s';x);s) == primrec(A.size;s; x,s'. f(s';x)) |
|
adjl-edge-accum | Def adjl-edge-accum(A;s',x'.f(s';x');s;x) == list_accum(s',x'.f(s';x');s;A.out(x)) |
|
eq_adjl | Def x =A= y == x= y |
| | Thm* A:AdjList, x,y:Vertices(adjl-graph(A)). x =A= y  |
|
mkgraphobj | Def mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) == < eq,eqw,eacc,eaccw,vacc,vaccw,other > |
| | Thm* For any graph
eq:(V V  ), eqw:( x,y:V. eq(x,y)  x = y), eacc:( T:Type. (T V T) T V T), eaccw:( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)), vacc:( T:Type. (T V T) T T), vaccw:( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & vacc(f,s) = list_accum(s',x'.f(s',x');s;L)), other:Top. mkgraphobj(eq, eqw, eacc, eaccw, vacc, vaccw, other) GraphObject(the_graph) |
|
adjl_size | Def t.size == 1of(t) |
| | Thm* t:AdjList. t.size  |
|
primrec | Def primrec(n;b;c) == if n= 0 b else c(n-1,primrec(n-1;b;c)) fi (recursive) |
| | Thm* T:Type, n: , b:T, c:( n T T). primrec(n;b;c) T |
|
adjl_out | Def t.out == 2of(t) |
| | Thm* t:AdjList. t.out t.size ( t.size List) |
|
list_accum | Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive) |
| | Thm* T,T':Type, l:T List, y:T', f:(T' T T'). list_accum(x,a.f(x,a);y;l) T' |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |