Theorem | Name |
Thm* a: , n:  . a = (a n) n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0  a < 0) & ((a rem n) > 0  a > 0) | [div_rem_properties] |
cites |
Thm* a: , n:  . a = (a n) n+(a rem n) | [div_rem_sum] |
Thm* a,b: , n: . a b  n a n b | [mul_preserves_le] |
Thm* a:{...0}, n:{...-1}. 0 (a rem n) & (a rem n) > n | [rem_bounds_3] |
Thm* a:{...0}, n: . 0 (a rem n) & (a rem n) > -n | [rem_bounds_2] |
Thm* a: , n:{...-1}. 0 (a rem n) & (a rem n) < -n | [rem_bounds_4] |
Thm* a: , n: . 0 (a rem n) & (a rem n) < n | [rem_bounds_1] |