graph 1 1 Sections Graphs Doc

TheoremName
Thm* a:, n:. a = (a n)n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0)[div_rem_properties]
cites
Thm* a:, n:. a = (a n)n+(a rem n)[div_rem_sum]
Thm* a,b:, n:. ab nanb[mul_preserves_le]
Thm* a:{...0}, n:{...-1}. 0(a rem n) & (a rem n) > n[rem_bounds_3]
Thm* a:{...0}, n:. 0(a rem n) & (a rem n) > -n[rem_bounds_2]
Thm* a:, n:{...-1}. 0(a rem n) & (a rem n) < -n[rem_bounds_4]
Thm* a:, n:. 0(a rem n) & (a rem n) < n[rem_bounds_1]

graph 1 1 Sections Graphs Doc