At:
div rem properties a:, n:. a = (a n)n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0)
By:
RepeatFor 2 (Analyze 0)
THEN
Inst
Thm*a:, n:. a = (a n)n+(a rem n)
[a;n]
THEN
Assert (|a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0))
Generated subgoals:
1. a: 2. n: 3. a = (a n)n+(a rem n) 4. |a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0) a = (a n)n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0)