graph 1 1 Sections Graphs Doc

RankTheoremName
8 Thm* x,y:, n:. ((x+y) rem n) = (((x rem n)+(y rem n)) rem n)+if (x+y < 0)(0 < (((x rem n)+(y rem n)) rem n))-|n| ;((((x rem n)+(y rem n)) rem n) < 0)(0 < x+y)|n| else 0 fi[rem_add]
cites
1 Thm* a:, n:. a = (a n)n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0 a < 0) & ((a rem n) > 0 a > 0)[div_rem_properties]
7 Thm* x:, n:. ((-x) rem n) = -(x rem n)[rem_minus]
7 Thm* n:. (0 rem n) = 0[zero_rem]
6 Thm* a:, n:, q,r:. a = qn+r |r| < |n| (r < 0 a < 0) (r > 0 a > 0) q = (a n) & r = (a rem n)[div_rem_unique]

graph 1 1 Sections Graphs Doc