Rank | Theorem | Name |
7 | Thm* x,y: , n:  . ((x y) rem n) = (((x rem n) (y rem n)) rem n) | [rem_mul] |
cites |
1 | Thm* a: , n:  . a = (a n) n+(a rem n) & |a rem n| < |n| & ((a rem n) < 0  a < 0) & ((a rem n) > 0  a > 0) | [div_rem_properties] |
6 | Thm* a: , n:  , q,r: . a = q n+r  |r| < |n|  (r < 0  a < 0)  (r > 0  a > 0)  q = (a n) & r = (a rem n) | [div_rem_unique] |
4 | Thm* a,b: . a b < 0  a < 0 & b > 0 a > 0 & b < 0 | [neg_mul_arg_bounds] |
3 | Thm* a,b: . a b > 0  a > 0 & b > 0 a < 0 & b < 0 | [pos_mul_arg_bounds] |