At:
mod mul11
1.
x:
2.
y:
3.
n:
4.
x = (x n)n+(x mod n)
5.
(x mod n) < n
6.
y = (y n)n+(y mod n)
7.
(y mod n) < n
8.
(x mod n)(y mod n) = (((x mod n)(y mod n)) n)n+(((x mod n)(y mod n)) mod n)
9.
(((x mod n)(y mod n)) mod n) < n
xy = ((x n)(y n)n+(x n)(y mod n)+(x mod n)(y n)+(((x mod n)(y mod n)) n))n+(((x mod n)(y mod n)) mod n)
By:
Subst (xy = ((x n)n+(x mod n))((y n)n+(y mod n))) 0
THEN
All ArithSimp
Generated subgoals: