graph 1 2 Sections Graphs Doc

Def a mod n == if 0aa rem n ;((-a) rem n)=00 else n-((-a) rem n) fi

is mentioned by

Thm* x:, n:. (n | x) (x mod n) = 0[elim_divides]
Thm* x,y:, n:. ((xy) mod n) = mod_guard((x mod n)(y mod n);n)[mod_mul_guard]
Thm* x,y:, n:. ((x+y) mod n) = mod_guard((x mod n)+(y mod n);n)[mod_add_guard]
Def mod_guard(x;y) == x mod y[mod_guard]

In prior sections: int 2 graph 1 1

Try larger context: Graphs

graph 1 2 Sections Graphs Doc