graph 1 2 Sections Graphs Doc

RankTheoremName
6 Thm* k:, L: List. 0 < ||L|| (r:. r- > L^k)[Ramsey]
cites
4 Thm* L: List. sum(L[i]-1 | i < ||L||)+1- > L^1[Ramsey-base-case]
0 Thm* k:, L: List, r1,r2:. r1r2 r1- > L^k r2- > L^k[arrows-monotone1]
5 Thm* k:, L: List. k-1- > L^k (i:||L||. L[i] < k)[trivial-arrows]
0 Thm* k,b:, f:(k). (x:k. bf(x)) bksum(f(x) | x < k)[sum_lower_bound]
1 Thm* n:, f,g:(n), d:. sum(f(x)-g(x) | x < n) = d sum(f(x) | x < n) = sum(g(x) | x < n)+d[sum_difference]
2 Thm* n:, f:(n), m:n. (x:n. x = m f(x) = 0) sum(f(x) | x < n) = f(m)[singleton_support_sum]
3 Thm* L: List, i,j:||L||. 0 < L[i] L[i--][j] = if j=i L[j]-1 else L[j] fi[list-dec-select]
0 Thm* n:, f:(n). (x:n. 0f(x)) 0sum(f(x) | x < n)[non_neg_sum]
2 Thm* L: List, i:||L||. 0 < L[i] ||L[i--]|| = ||L|| [list-dec-length]
2 Thm* n:, f:(nT), i:n. mklist(n;f)[i] = f(i)[mklist_select]
1 Thm* n:, f:(nT). ||mklist(n;f)|| = n [mklist_length]
4 Thm* r,k:, L,R: List. 2k ||R|| = ||L|| (i:||L||. 0 < L[i] R[i]- > L[i--]^k) r- > R^k-1 r+1- > L^k[Ramsey-recursion]

graph 1 2 Sections Graphs Doc