Rank | Theorem | Name |
6 | Thm* k: , L: List. 0 < ||L||  ( r: . r- > L^k) | [Ramsey] |
cites |
4 | Thm* L: List. sum(L[i]-1 | i < ||L||)+1- > L^1 | [Ramsey-base-case] |
0 | Thm* k: , L: List, r1,r2: . r1 r2  r1- > L^k  r2- > L^k | [arrows-monotone1] |
5 | Thm* k: , L: List. k-1- > L^k  ( i: ||L||. L[i] < k) | [trivial-arrows] |
0 | Thm* k,b: , f:( k  ). ( x: k. b f(x))  b k sum(f(x) | x < k) | [sum_lower_bound] |
1 | Thm* n: , f,g:( n  ), d: . sum(f(x)-g(x) | x < n) = d  sum(f(x) | x < n) = sum(g(x) | x < n)+d | [sum_difference] |
2 | Thm* n: , f:( n  ), m: n. ( x: n. x = m  f(x) = 0)  sum(f(x) | x < n) = f(m) | [singleton_support_sum] |
3 | Thm* L: List, i,j: ||L||. 0 < L[i]  L[i--][j] = if j= i L[j]-1 else L[j] fi | [list-dec-select] |
0 | Thm* n: , f:( n  ). ( x: n. 0 f(x))  0 sum(f(x) | x < n) | [non_neg_sum] |
2 | Thm* L: List, i: ||L||. 0 < L[i]  ||L[i--]|| = ||L||  | [list-dec-length] |
2 | Thm* n: , f:( n T), i: n. mklist(n;f)[i] = f(i) | [mklist_select] |
1 | Thm* n: , f:( n T). ||mklist(n;f)|| = n  | [mklist_length] |
4 | Thm* r,k: , L,R: List. 2 k  ||R|| = ||L||  ( i: ||L||. 0 < L[i]  R[i]- > L[i--]^k)  r- > R^k-1  r+1- > L^k | [Ramsey-recursion] |