Rank | Theorem | Name |
4 | Thm* r,k: , L,R: List. 2 k  ||R|| = ||L||  ( i: ||L||. 0 < L[i]  R[i]- > L[i--]^k)  r- > R^k-1  r+1- > L^k | [Ramsey-recursion] |
cites |
0 | Thm* as,bs:T List. ||as @ bs|| = ||as||+||bs||  | [length_append] |
1 | Thm* as,bs:T List, i:{||as||..(||as||+||bs||) }. (as @ bs)[i] = bs[(i-||as||)] | [select_append_back] |
1 | Thm* as,bs:T List, i: ||as||. (as @ bs)[i] = as[i] | [select_append_front] |
2 | Thm* L: List, i: ||L||. 0 < L[i]  ||L[i--]|| = ||L||  | [list-dec-length] |
0 | Thm* n,m: , f:( (n-1)  (m-1)). increasing(f;n-1)  increasing(f[n-1:=m-1];n) | [fappend-increasing] |
0 | Thm* a:T, as:T List, i: . 0 < i  i ||as||  [a / as][i] = as[(i-1)] | [select_cons_tl] |
0 | Thm* as:A List, n:{0...||as||}. ||firstn(n;as)|| = n  | [length_firstn] |
0 | Thm* s:T List. 0 < ||s||  (s ~ (firstn(||s||-1;s) @ [s[(||s||-1)]])) | [list-decomp-last] |
0 | Thm* f,as':Top, A:Type, as:A List. map(f;as @ as') ~ (map(f;as) @ map(f;as')) | [map_append_sq] |
1 | Thm* as:T List, n:{0...||as||}, i: n. firstn(n;as)[i] = as[i] | [select_firstn] |
3 | Thm* L: List, i,j: ||L||. 0 < L[i]  L[i--][j] = if j= i L[j]-1 else L[j] fi | [list-dec-select] |
1 | Thm* k,m: , f:( k  m), g:( m  ). increasing(f;k)  increasing(g;m)  increasing(g o f;k) | [compose_increasing] |
0 | Thm* f,g:Top, s:Top List. map(f;map(g;s)) ~ map(f o g;s) | [map-map] |
1 | Thm* f:(A B), as:A List, n: ||as||. map(f;as)[n] = f(as[n]) | [map_select] |
0 | Thm* f:(A B), as:A List. ||map(f;as)|| = ||as||  | [map_length] |
0 | Thm* k: , f:( k  ). increasing(f;k)  ( x,y: k. x < y  f(x) < f(y)) | [increasing_implies] |