graph 1 2 Sections Graphs Doc

RankTheoremName
4 Thm* r,k:, L,R: List. 2k ||R|| = ||L|| (i:||L||. 0 < L[i] R[i]- > L[i--]^k) r- > R^k-1 r+1- > L^k[Ramsey-recursion]
cites
0 Thm* as,bs:T List. ||as @ bs|| = ||as||+||bs|| [length_append]
1 Thm* as,bs:T List, i:{||as||..(||as||+||bs||)}. (as @ bs)[i] = bs[(i-||as||)][select_append_back]
1 Thm* as,bs:T List, i:||as||. (as @ bs)[i] = as[i][select_append_front]
2 Thm* L: List, i:||L||. 0 < L[i] ||L[i--]|| = ||L|| [list-dec-length]
0 Thm* n,m:, f:((n-1)(m-1)). increasing(f;n-1) increasing(f[n-1:=m-1];n)[fappend-increasing]
0 Thm* a:T, as:T List, i:. 0 < i i||as|| [a / as][i] = as[(i-1)][select_cons_tl]
0 Thm* as:A List, n:{0...||as||}. ||firstn(n;as)|| = n [length_firstn]
0 Thm* s:T List. 0 < ||s|| (s ~ (firstn(||s||-1;s) @ [s[(||s||-1)]]))[list-decomp-last]
0 Thm* f,as':Top, A:Type, as:A List. map(f;as @ as') ~ (map(f;as) @ map(f;as'))[map_append_sq]
1 Thm* as:T List, n:{0...||as||}, i:n. firstn(n;as)[i] = as[i][select_firstn]
3 Thm* L: List, i,j:||L||. 0 < L[i] L[i--][j] = if j=i L[j]-1 else L[j] fi[list-dec-select]
1 Thm* k,m:, f:(km), g:(m). increasing(f;k) increasing(g;m) increasing(g o f;k)[compose_increasing]
0 Thm* f,g:Top, s:Top List. map(f;map(g;s)) ~ map(f o g;s)[map-map]
1 Thm* f:(AB), as:A List, n:||as||. map(f;as)[n] = f(as[n])[map_select]
0 Thm* f:(AB), as:A List. ||map(f;as)|| = ||as|| [map_length]
0 Thm* k:, f:(k). increasing(f;k) (x,y:k. x < y f(x) < f(y))[increasing_implies]

graph 1 2 Sections Graphs Doc