Rank | Theorem | Name |
3 | Thm* n,k: , c:( n  k). p:( k ( List)). sum(||p(j)|| | j < k) = n & ( j: k, x,y: ||p(j)||. x < y  (p(j))[x] > (p(j))[y]) & ( j: k, x: ||p(j)||. (p(j))[x] < n & c((p(j))[x]) = j) | [finite-partition] |
cites |
0 | Thm* n: , a: . sum(a | x < n) = a n | [sum_constant] |
0 | Thm* n: , f,g:( n  ). ( i: n. f(i) = g(i))  sum(f(x) | x < n) = sum(g(x) | x < n) | [sum_functionality] |
0 | Thm* k: , f,g:( k  ), p:( k  ). sum(if p(i) f(i)+g(i) else f(i) fi | i < k) = sum(f(i) | i < k)+sum(if p(i) g(i) else 0 fi | i < k) | [sum-ite] |
2 | Thm* n: , f:( n  ), m: n. ( x: n. x = m  f(x) = 0)  sum(f(x) | x < n) = f(m) | [singleton_support_sum] |
0 | Thm* a:T, as:T List, i: . 0 < i  i ||as||  [a / as][i] = as[(i-1)] | [select_cons_tl] |