graph 1 2 Sections Graphs Doc

RankTheoremName
3 Thm* n,k:, c:(nk). p:(k( List)). sum(||p(j)|| | j < k) = n & (j:k, x,y:||p(j)||. x < y (p(j))[x] > (p(j))[y]) & (j:k, x:||p(j)||. (p(j))[x] < n & c((p(j))[x]) = j)[finite-partition]
cites
0 Thm* n:, a:. sum(a | x < n) = an[sum_constant]
0 Thm* n:, f,g:(n). (i:n. f(i) = g(i)) sum(f(x) | x < n) = sum(g(x) | x < n)[sum_functionality]
0 Thm* k:, f,g:(k), p:(k). sum(if p(i) f(i)+g(i) else f(i) fi | i < k) = sum(f(i) | i < k)+sum(if p(i) g(i) else 0 fi | i < k)[sum-ite]
2 Thm* n:, f:(n), m:n. (x:n. x = m f(x) = 0) sum(f(x) | x < n) = f(m)[singleton_support_sum]
0 Thm* a:T, as:T List, i:. 0 < i i||as|| [a / as][i] = as[(i-1)][select_cons_tl]

graph 1 2 Sections Graphs Doc