Rank | Theorem | Name |
2 | Thm* s:(T+T) List. paren(T;s)  ( i:T, s1,s2:(T+T) List. s = (s1 @ [inl(i)] @ s2)  (inr(i) s2)) | [paren_order1] |
cites |
1 | Thm* P:(((T+T) List) Prop). P(nil)  ( s1,s2:(T+T) List. P(s1)  P(s2)  paren(T;s1)  paren(T;s2)  P(s1 @ s2))  ( s:(T+T) List, t:T. P(s)  paren(T;s)  P([inl(t)] @ s @ [inr(t)]))  ( s:(T+T) List. paren(T;s)  P(s)) | [paren_induction] |
0 | Thm* a,c,b,d:T List. (a @ b) = (c @ d)  ( e:T List. a = (c @ e) & d = (e @ b) c = (a @ e) & b = (e @ d)) | [equal_appends] |
0 | Thm* a,b:T List, x:T. [x] = (a @ b)  a = nil & b = [x] b = nil & a = [x] | [append_is_singleton] |