graph 1 2 Sections Graphs Doc

RankTheoremName
5 Thm* p:. prime(p) (m,n:. mm = pnn n = 0)[sqrt_prime_irrational]
cites
2 Thm* a:, n:. a = (a n)n+(a mod n) & (a mod n) < n[div_floor_mod_properties]
0Thm* a,b:. ab = ba[mul_com]
0 Thm* a,b:, n:. ab nanb[mul_preserves_le]
1 Thm* a,b:, n:. na < nb a < b[mul_cancel_in_lt]
3 Thm* a,b:, n:. na = nb a = b[mul_cancel_in_eq]
2 Thm* a,b:. 0 < ab[mul_bounds_1b]
4 Thm* a,b:. ab < 0 a < 0 & b > 0 a > 0 & b < 0[neg_mul_arg_bounds]
3 Thm* a,b:. ab > 0 a > 0 & b > 0 a < 0 & b < 0[pos_mul_arg_bounds]
1 Thm* a,b:. 0ab[mul_bounds_1a]

graph 1 2 Sections Graphs Doc