graph 1 3 Sections Graphs Doc

Def t.eacc == 1of(2of(2of(t)))

is mentioned by

Thm* For any graph the_obj:GraphObject(the_graph). (x,y:V. the_obj.eq(x,y) x = y) & (T:Type, s:T, x:V, f:(TVT). L:V List. (y:V. x-the_graph- > y (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & (T:Type, s:T, f:(TVT). L:V List. no_repeats(V;L) & (y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L))[graphobj-properties]
Thm* For any graph t:GraphObject(the_graph). t.eaccw (T:Type, s:T, x:V, f:(TVT). L:V List. (y:V. x-the_graph- > y (y L)) & t.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L))[gro_eaccw_wf]
Def dfs(the_obj;s;i) == if member-paren(x,y.the_obj.eq(x,y);i;s) s else [inl(i) / (the_obj.eacc((s',j. dfs(the_obj;s';j)),[inr(i) / s],i))] fi (recursive)[dfs]

Try larger context: Graphs

graph 1 3 Sections Graphs Doc