graph 1 3 Sections Graphs Doc

RankTheoremName
3 Thm* M:AdjMatrix, T:Type, s:T, x:Vertices(adjm-graph(M)), f:(TVertices(adjm-graph(M))T). L:Vertices(adjm-graph(M)) List. (y:Vertices(adjm-graph(M)). x-adjm-graph(M)- > y (y L)) & adjm-edge-accum(M;s',x'.f(s',x');s;x) = list_accum(s',x'.f(s',x');s;L)[adjm-edge-accum-properties]
cites
2 Thm* P:(T), L:T List, x:T. (x filter(P;L)) (x L) & P(x)[member_filter]
2 Thm* i,j,k:. (k upto(i;j)) ik & k < j[member_upto]
0 Thm* f:(TAT), P:(A), L:A List, s:T. list_accum(s',x'.f(s',x');s;filter(P;L)) ~ list_accum(i,y.if P(y) f(i,y) else i fi;s;L)[list_accum_filter]
0 Thm* n:, f,x:Top. primrec(n;x;f) ~ list_accum(i,y.f(y,i);x;upto(0;n))[primrec_list_accum]

graph 1 3 Sections Graphs Doc