Rank | Theorem | Name |
16 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. df-traversal(the_graph;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *i)  df-traversal(the_graph;dfs(the_obj;s;i)) | [dfs-df-traversal] |
cites |
0 | Thm* a,b,c:Top List. ((a @ b) @ c) ~ (a @ b @ c) | [append_assoc_sq] |
15 | Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  ( k:V. (inr(k) s2)  j-the_graph- > *k)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inr(i) s1)  (inl(i) s1)  paren(V;s2)  l_disjoint(V+V;s2;s1)  no_repeats(V+V;s2)  ( j:V. (inr(j) s2)  i-the_graph- > *j)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) (inl(j) s1) (inr(j) s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction4] |
3 | Thm* s':(T+T) List. paren(T;s')  ( i:T. (inr(i) s')  (inl(i) s')) | [paren_balance2] |
0 | Thm* For any graph
i:V, s:Traversal. ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *i)  df-traversal(the_graph;s)  df-traversal(the_graph;[inr(i) / s]) | [df-traversal-cons2] |
3 | Thm* For any graph
( x,y:V. Dec(x = y))  ( x,y:V. x-the_graph- > *y  x = y ( z:V. z = x & x-the_graph- > z & z-the_graph- > *y)) | [connect-iff] |
3 | Thm* ( x,y:T. Dec(x = y))  ( s:(T+T) List, i:T. Dec((inl(i) s))) | [decidable__l_member_paren] |
0 | Thm* For any graph
the_obj:GraphObject(the_graph). ( x,y:V. the_obj.eq(x,y)  x = y) & ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [graphobj-properties] |
2 | Thm* s:T List, z:T. (z s)  ( s1,s2:T List. s = (s1 @ [z / s2])) | [l_member_decomp] |
0 | Thm* as,bs,cs:T List. ((as @ bs) @ cs) = (as @ (bs @ cs)) | [append_assoc] |
1 | Thm* l:T List, a,x:T. (x [a / l])  x = a (x l) | [cons_member] |
2 | Thm* x:T, l1,l2:T List. (x l1 @ l2)  (x l1) (x l2) | [member_append] |