Rank | Theorem | Name |
16 | Thm* For any graph
the_obj:GraphObject(the_graph), L:V List, s:Traversal, x:V. dfl-traversal(the_graph;L;s)  ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *x)  dfl-traversal(the_graph;L @ [x];dfs(the_obj;s;x)) | [dfs-dfl-traversal] |
cites |
15 | Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s:Traversal, i:V. (inl(i) s) (inr(i) s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  paren(V;s2)  ( k:V. (inr(k) s2)  j-the_graph- > *k)  paren(V;s3)  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. (inr(i) s1)  (inl(i) s1)  paren(V;s2)  l_disjoint(V+V;s2;s1)  no_repeats(V+V;s2)  ( j:V. (inr(j) s2)  i-the_graph- > *j)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) (inl(j) s1) (inr(j) s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction4] |
3 | Thm* s':(T+T) List. paren(T;s')  ( i:T. (inr(i) s')  (inl(i) s')) | [paren_balance2] |
2 | Thm* x:T, l1,l2:T List. (x l1 @ l2)  (x l1) (x l2) | [member_append] |
1 | Thm* l:T List, a,x:T. (x [a / l])  x = a (x l) | [cons_member] |
2 | Thm* For any graph
L:V List, i:V, s:Traversal. ( j:V. (inr(j) s)  (inl(j) s)  j-the_graph- > *i)  L-- > *i  dfl-traversal(the_graph;L;s)  dfl-traversal(the_graph;L;[inr(i) / s]) | [dfl-traversal-consr] |
0 | Thm* as,bs,cs:T List. ((as @ bs) @ cs) = (as @ (bs @ cs)) | [append_assoc] |
2 | Thm* For any graph
L:V List, i:V, s:Traversal. (inr(i) s)  dfl-traversal(the_graph;L;s)  dfl-traversal(the_graph;L;[inl(i) / s]) | [dfl-traversal-consl] |
3 | Thm* For any graph
A,B:V List. B A  A-- > *B | [list-list-connect-iseg] |
3 | Thm* For any graph
A,B,C:V List. A-- > *C B-- > *C  A @ B-- > *C | [list-list-connect-append2] |
1 | Thm* For any graph
L1,L2:V List, s:Traversal. L1-- > *L2  dfl-traversal(the_graph;L2;s)  dfl-traversal(the_graph;L1;s) | [dfl-traversal-connect] |