Rank | Theorem | Name |
9 | Thm* For any graph
the_obj:GraphObject(the_graph). M:(Traversal  ). ( i:V, s:Traversal. M([inl(i) / s]) M(s)) & ( i:V, s:Traversal. member-paren(x,y.the_obj.eq(x,y);i;s)  M([inr(i) / s]) < M(s)) | [dfs-measure] |
cites |
2 | Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-paren(x,y.E(x,y);i;s)  (inl(i) s) (inr(i) s)) | [assert-member-paren] |
2 | Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-right-paren(x,y.E(x,y);i;s)  (inr(i) s)) | [assert-member-right-paren] |
8 | Thm* For any graph
the_obj:GraphObject(the_graph), P,Q:(V  ). ( x:V. P(x)  Q(x))  ( x:V. P(x) & Q(x))  vertex-count(the_obj;x.P(x)) < vertex-count(the_obj;x.Q(x)) | [vertex-count-less] |
8 | Thm* For any graph
the_obj:GraphObject(the_graph), P,Q:(V  ). ( x:V. P(x)  Q(x))  vertex-count(the_obj;x.P(x)) vertex-count(the_obj;x.Q(x)) | [vertex-count-le] |
0 | Thm* For any graph
the_obj:GraphObject(the_graph). ( x,y:V. the_obj.eq(x,y)  x = y) & ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [graphobj-properties] |