graph 1 3 Sections Graphs Doc

RankTheoremName
14 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s) s' = nil) & ((inr(i) s) & (inl(i) s) (s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)[dfs-properties]
cites
13 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s) s' = nil) & ((inr(i) s) & (inl(i) s) (s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & dfs(the_obj;s;i) = (s' @ s)[dfs-cases]
12 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (j:V. (inr(j) s') i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s)[dfs-connect]
12 Thm* For any graph the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (inl(i) s') (inl(i) s) (inr(i) s) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s)[dfs_member]
2 Thm* x,y,z:T List. (x @ z) = (y @ z) x = y[equal_append_front]
1 Thm* x1,z,x2,x3:T List. ||x1|| = ||z|| (x1 @ x2) = (z @ x3) x1 = z & x2 = x3[equal_appends_eq]
0 Thm* as,bs:T List. ||as @ bs|| = ||as||+||bs|| [length_append]

graph 1 3 Sections Graphs Doc