Rank | Theorem | Name |
14 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-properties] |
cites |
13 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ((inr(i) s) (inl(i) s)  s' = nil) & ( (inr(i) s) & (inl(i) s)  ( s2:Traversal. s' = ([inl(i)] @ s2 @ [inr(i)]) Traversal)) & dfs(the_obj;s;i) = (s' @ s) | [dfs-cases] |
12 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. ( j:V. (inr(j) s')  i-the_graph- > *j) & dfs(the_obj;s;i) = (s' @ s) | [dfs-connect] |
12 | Thm* For any graph
the_obj:GraphObject(the_graph), s:Traversal, i:V. s':Traversal. (inl(i) s') (inl(i) s) (inr(i) s) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & dfs(the_obj;s;i) = (s' @ s) | [dfs_member] |
2 | Thm* x,y,z:T List. (x @ z) = (y @ z)  x = y | [equal_append_front] |
1 | Thm* x1,z,x2,x3:T List. ||x1|| = ||z||  (x1 @ x2) = (z @ x3)  x1 = z & x2 = x3 | [equal_appends_eq] |
0 | Thm* as,bs:T List. ||as @ bs|| = ||as||+||bs||  | [length_append] |