Rank | Theorem | Name |
14 | Thm* For any graph
the_obj:GraphObject(the_graph), P:(V Traversal Traversal Prop), s:Traversal, i:V. ( s1,s2:Traversal, i:V. P(i,s1,s2)  l_disjoint(V+V;s2;s1) & no_repeats(V+V;s2))  ( s:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s)  P(i,s,nil))  ( s1,s2,s3:Traversal, i,j:V. i-the_graph- > j  P(j,s1,s2)  P(i,s2 @ s1,s3)  P(i,s1,s3 @ s2))  ( s1,s2:Traversal, i:V. member-paren(x,y.the_obj.eq(x,y);i;s1)  ( j:V. i-the_graph- > j  j = i  (inl(j) s2) member-paren(x,y.the_obj.eq(x,y);j;s1))  P(i,[inr(i) / s1],s2)  P(i,s1,[inl(i) / (s2 @ [inr(i)])]))  ( s':Traversal. P(i,s,s') & dfs(the_obj;s;i) = (s' @ s)) | [dfs_induction3] |
cites |
9 | Thm* For any graph
the_obj:GraphObject(the_graph). M:(Traversal  ). ( i:V, s:Traversal. M([inl(i) / s]) M(s)) & ( i:V, s:Traversal. member-paren(x,y.the_obj.eq(x,y);i;s)  M([inr(i) / s]) < M(s)) | [dfs-measure] |
0 | Thm* For any graph
the_obj:GraphObject(the_graph). ( x,y:V. the_obj.eq(x,y)  x = y) & ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [graphobj-properties] |
0 | Thm* a,b,c:Top List. ((a @ b) @ c) ~ (a @ b @ c) | [append_assoc_sq] |
13 | Thm* For any graph
the_obj:GraphObject(the_graph), l:V List, s:Traversal. s':Traversal. ( i:V. (i l)  (inl(i) s') (inl(i) s) (inr(i) s)) & l_disjoint(V+V;s';s) & no_repeats(V+V;s') & paren(V;s') & list_accum(s',j.dfs(the_obj;s';j);s;l) = (s' @ s) | [dfs_accum_member] |
1 | Thm* x,z,y,w:T List. ||x|| = ||z|| ||y|| = ||w||  (x @ y) = (z @ w)  x = z & y = w | [append_one_one] |
2 | Thm* E:(T T  ). ( x,y:T. E(x,y)  x = y)  ( i:T, s:(T+T) List. member-paren(x,y.E(x,y);i;s)  (inl(i) s) (inr(i) s)) | [assert-member-paren] |
0 | Thm* For any graph
t:GraphObject(the_graph), T:Type. t.eacc (T V T) T V T | [gro_eacc_wf] |