Rank | Theorem | Name |
7 | Thm* For any graph
the_obj:GraphObject(the_graph), P:(V  ). no_repeats(V;vertex-subset(the_obj;x.P(x))) & ( x:V. (x vertex-subset(the_obj;x.P(x)))  P(x)) | [vertex-subset-properties] |
cites |
0 | Thm* For any graph
the_obj:GraphObject(the_graph). ( x,y:V. the_obj.eq(x,y)  x = y) & ( T:Type, s:T, x:V, f:(T V T). L:V List. ( y:V. x-the_graph- > y  (y L)) & the_obj.eacc(f,s,x) = list_accum(s',x'.f(s',x');s;L)) & ( T:Type, s:T, f:(T V T). L:V List. no_repeats(V;L) & ( y:V. (y L)) & the_obj.vacc(f,s) = list_accum(s',x'.f(s',x');s;L)) | [graphobj-properties] |
4 | Thm* L:T List. no_repeats(T;rev(L))  no_repeats(T;L) | [no_repeats_reverse] |
2 | Thm* P:(T  ), L:T List, x:T. (x filter(P;L))  (x L) & P(x) | [member_filter] |
3 | Thm* x:T, L:T List. (x rev(L))  (x L) | [member_reverse] |
0 | Thm* as:T List. (as @ nil) = as | [append_back_nil] |
1 | Thm* P:(T  ), L2,L1:T List. list_accum(l,x.if P(x) [x / l] else l fi;L1;L2) ~ (rev(filter(P;L2)) @ L1) | [filter_list_accum] |
6 | Thm* P:(T  ), l:T List. no_repeats(T;l)  no_repeats(T;filter(P;l)) | [no_repeats_filter] |