hol Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def P  Q == PQ

is mentioned by

Thm* b:b  b = false[not_assert_imp_eq_bfalse]
Thm* b:b  b = true[assert_imp_eq_btrue]
Thm* (True  P P[true_imp]
Thm* (False  P True[false_imp]
Thm* (P  True)  True[imp_true]
Thm* (P  False)  P[imp_false]
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a), a:'ar:'b.
Thm* iso_pair('a;'b;P;rep;abs rep(a) = r  a = abs(r)
[iso_pair_rep_to_abs]
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs)
Thm* 
Thm* (a:'aabs(rep(a)) = a) & (r:'bP(r) = ((rep(abs(r))) = r))
[iso_pair_char]
Thm* 'a,'b:S, P:('b), rep:('a'b), abs:('b'a).
Thm* iso_pair('a;'b;P;rep;abs)
Thm* 
Thm* (rep':('a'b). type_definition('b;'a;P;rep'))
[type_def_iso]
Thm* 'a:S, P,Q:('aProp).
Thm* (x:'aQ(x P(x))  (x:'aQ(x))  P(@x:'aQ(x))
[choose_elim_pos]
Thm* 'a:S, P,Q:('aProp).
Thm* (x:'aQ(x P(x))
Thm* 
Thm* ((x:'aQ(x))  (x:'aP(x)))  P(@x:'aQ(x))
[choose_elim_neg]
Thm* P:('aProp), x:'aP(x P(@x:'aP(x))[choose_true]
Thm* P:('aType), x:'aP(x (y:'aP(y x = y (@y:'aP(y)) = x[choose_unique]
Thm* T:S, P,Q:(TType). (x:TP(x Q(x))  (@x:TP(x)) = (@x:TQ(x))[choose_functionality_axiom]
Def type_definition('a;'b;P;rep)
Def == (x',x'':'brep(x') = rep(x'' 'a  x' = x'')
Def == & (x:'a(P(x))  (x':'bx = rep(x')))
[type_definition]

In prior sections: core fun 1 well fnd int 1 bool 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol Sections HOLlib Doc