Definitions hol HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol

DefA[P][type_if]
Defbif(bbx.x(bx); by.y(by))[bif]
Defisr(x)[isr]
Deftype_tag(x;'a)[type_tag]
DefXM[xmiddle]core
DefP[prop_to_bool_2]
DefProp[prop]core
DefS[stype]
DefDec(P)[decidable]core
DefA[not]core
Defx:TP(x)[ball]
Defx:TP(x)[bexists]
DefFalse[false]core
Defiso_pair('a;'b;P;rep;abs)[iso_pair]
Defij[le_int]bool 1
Defpq[bimplies]bool 1
Defb[bnot]bool 1
DefP  Q[or]core
Defi<j[lt_int]bool 1
Def{T}[guard]core
Def2of(t)[pi2]core
Def1of(t)[pi1]core
Defpq[band]bool 1
Defeq('a)[eq_pred]
DefS  T[subtype]core
Def<eq_pred:x>[eq_pred_marker]
Deffalse[bfalse]bool 1
Deftrue[btrue]bool 1
DefTrue[true]core
Defx:AB(x)[exists]core
Def@x:TP(x)[choose]
Defarb(T)[arb]
Deftype_definition('a;'b;P;rep)[type_definition]
Defb[assert]bool 1
Defx:AB(x)[all]core
Defx = y[bequal]
DefP[prop_to_bool]
Defif b t else f fi[ifthenelse]bool 1
DefP  Q[iff]core
DefP  Q[implies]core
DefP & Q[and]core
Defx:Tb(x)[tlambda]fun 1
Def[bool]bool 1
Defp  q[bor]bool 1
DefP  Q[rev_implies]core

About:
spreadspreadproductproductboolbfalsebtrueifthenelseassertdecidableunitit
voidintnatural_numberlesstokenunioninlinr
decidesetlambdaapplyfunctionuniverse
equalaxiommembersubtypepropimpliesandorfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol HOLlib Doc