Definitions hol arithmetic 1 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
nnsubDef nnsub(m;n) == if m<n then 0 else m-n fi 
Thm* m,n:. nnsub(m;n 
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
leDef AB == B<A
Thm* i,j:. (ij Prop
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtractlessless_than
setlambdafunctionuniverseaxiommemberpropall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 1 Sections HOLlib Doc