Definitions hol arithmetic 1 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
leDef AB == B<A
Thm* i,j:. (ij Prop
nnsubDef nnsub(m;n) == if m<n then 0 else m-n fi 
Thm* m,n:. nnsub(m;n 
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 
notDef A == A  False
Thm* A:Prop. (A Prop

About:
boolbfalsebtrueifthenelseassertintnatural_numbersubtractlessless_than
setuniversememberpropimpliesfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 1 Sections HOLlib Doc