| | Some definitions of interest. |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| ndiv | Def ndiv(m;n) == if n= 0 then 0 else m n fi |
| | | Thm* m,n: . ndiv(m;n)  |
|
| eq_int | Def i= j == if i=j true ; false fi |
| | | Thm* i,j: . (i= j)  |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |
| | | Thm* S |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |