Definitions hol arithmetic 2 HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Defined Operators mentioned in hol arithmetic 2

Defsuc[hsuc]hol num
Defadd[hadd]hol arithmetic 1
Defequal[hequal]hol min
Defall[hall]hol bool
Defand[hand]hol bool
Deflt[hlt]hol prim rec
Defcond[hcond]hol bool
Defsub[hsub]hol arithmetic 1
Defmult[hmult]hol arithmetic 1
Defexp[hexp]hol arithmetic 1
Defgt[hgt]hol arithmetic 1
Defor[hor]hol bool
Defle[hle]hol arithmetic 1
Defge[hge]hol arithmetic 1
Deffact[hfact]hol arithmetic 1
Defnot[hnot]hol bool
Defeven[heven]hol arithmetic 1
Defodd[hodd]hol arithmetic 1
Defmod[hmod]hol arithmetic 1
Defdiv[hdiv]hol arithmetic 1
Defimplies[himplies]hol min
Defexists[hexists]hol bool
Defpre[hpre]hol prim rec
Defx:Tb(x)[tlambda]fun 1
Defhnum[hnum]hol num
Defx:TP(x)[ball]hol
Defx:TP(x)[bexists]hol
Defb[assert]bool 1
Defhbool[hbool]hol min
Deft[ht]hol bool
Deff[hf]hol bool
Def'a  'b[hfun]hol min
DefS[stype]hol
Defx:AB(x)[all]core
Def[nat]int 1
Defx = y[bequal]hol
Defpq[band]bool 1
Defnnsub(m;n)[nnsub]hol arithmetic 1
Defij[le_int]bool 1
Defi<j[lt_int]bool 1
Defexp(m;n)[exp]hol arithmetic 1
Deffact(n)[fact]hol arithmetic 1
Defeven(n)[even]hol arithmetic 1
Defodd(n)[odd]hol arithmetic 1
Defnmod(m;n)[nmod]hol arithmetic 1
Defndiv(m;n)[ndiv]hol arithmetic 1
Defpre(n)[pre]hol prim rec
Defbif(bbx.x(bx); by.y(by))[bif]hol
Defpq[bimplies]bool 1
Defp  q[bor]bool 1
Defb[bnot]bool 1
DefAB[le]core
DefP[prop_to_bool]hol
Defi=j[eq_int]bool 1
DefA[not]core

About:
boolbfalsebtrueifthenelseassertintnatural_numberaddsubtractmultiply
divideremainderint_eqlessless_than
decidesetlambdaapply
functionycombuniverseequalaxiomimpliesfalsetrueall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol arithmetic 2 HOLlib Doc