Thm* x,n,m: . x n & x m  (nnsub(n;x) = nnsub(m;x)  n = m) | [cancel_sub] |
Thm* x,n,m: . n x & m x  (nnsub(x;n) = nnsub(x;m)  n = m) | [sub_cancel] |
Thm* m,x: . m x  ( n: . nnsub(x;m) n  x m+n) | [sub_less_eq_add] |
Thm* b,c: . c b  ( a: . nnsub(a;nnsub(b;c)) = nnsub(a+c;b)) | [sub_sub] |
Thm* a,b: . b a  ( c: . nnsub(a;b)<c  a<b+c) | [less_eq_sub_less] |
Thm* c: . nnsub(c;c) = 0 | [sub_equal_0] |
Thm* c,b: . c b  ( a: . nnsub(a+b;c) = a+nnsub(b;c)) | [less_eq_add_sub] |
Thm* a,c: . nnsub(a+c;c) = a | [add_sub] |
Thm* n,m,i: . i<nnsub(n;m)  i+m<n | [less_sub_add_less] |
Thm* m,n: . n<m  n nnsub(m;1) | [sub_less_or] |
Thm* n,m: . m<n  0<nnsub(n;m) | [sub_less_0] |
Thm* m,n: . nnsub(m;n) = m  m = 0 n = 0  | [sub_eq_eq_0] |
Thm* n,m: . nnsub(n;m) n | [sub_less_eq] |
Thm* a,b,c: . nnsub(a;b+c) = nnsub(nnsub(a;b);c) | [sub_plus] |
Thm* n,m: . nnsub(n+1;m+1) = nnsub(n;m) | [sub_mono_eq] |
Thm* m,n,x: . x nnsub(m;n) = nnsub(x m;x n) | [left_sub_distrib] |
Thm* m,n,x: . nnsub(m;n) x = nnsub(m x;n x) | [right_sub_distrib] |
Thm* m,n,x: . n x  (m+n = x  m = nnsub(x;n)) | [add_eq_sub] |
Thm* m,n: . pre(nnsub(m;n)) = nnsub(pre(m);n) | [pre_sub] |
Thm* m,n: . n m  nnsub(m;n)+n = m  | [sub_add] |
Thm* m,n: . nnsub(m;n) = 0  m n | [sub_eq_0] |
Thm* m: . nnsub(0;m) = 0 & nnsub(m;0) = m | [sub_0] |