hol arithmetic 4 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def nnsub(m;n) == if m<n then 0 else m-n fi 

is mentioned by

Thm* x,n,m:xn & xm  (nnsub(n;x) = nnsub(m;x n = m)[cancel_sub]
Thm* x,n,m:nx & mx  (nnsub(x;n) = nnsub(x;m n = m)[sub_cancel]
Thm* m,x:mx  (n:. nnsub(x;m)n  xm+n)[sub_less_eq_add]
Thm* b,c:cb  (a:. nnsub(a;nnsub(b;c)) = nnsub(a+c;b))[sub_sub]
Thm* a,b:ba  (c:. nnsub(a;b)<c  a<b+c)[less_eq_sub_less]
Thm* c:. nnsub(c;c) = 0[sub_equal_0]
Thm* c,b:cb  (a:. nnsub(a+b;c) = a+nnsub(b;c))[less_eq_add_sub]
Thm* a,c:. nnsub(a+c;c) = a[add_sub]
Thm* n,m,i:i<nnsub(n;m i+m<n[less_sub_add_less]
Thm* m,n:n<m  nnnsub(m;1)[sub_less_or]
Thm* n,m:m<n  0<nnsub(n;m)[sub_less_0]
Thm* m,n:. nnsub(m;n) = m  m = 0    n = 0  [sub_eq_eq_0]
Thm* n,m:. nnsub(n;m)n[sub_less_eq]
Thm* a,b,c:. nnsub(a;b+c) = nnsub(nnsub(a;b);c)[sub_plus]
Thm* n,m:. nnsub(n+1;m+1) = nnsub(n;m)[sub_mono_eq]
Thm* m,n,x:xnnsub(m;n) = nnsub(xm;xn)[left_sub_distrib]
Thm* m,n,x:. nnsub(m;n)x = nnsub(mx;nx)[right_sub_distrib]
Thm* m,n,x:nx  (m+n = x    m = nnsub(x;n))[add_eq_sub]
Thm* m,n:. pre(nnsub(m;n)) = nnsub(pre(m);n)[pre_sub]
Thm* m,n:nm  nnsub(m;n)+n = m  [sub_add]
Thm* m,n:. nnsub(m;n) = 0  mn[sub_eq_0]
Thm* m:. nnsub(0;m) = 0 & nnsub(m;0) = m[sub_0]

In prior sections: hol arithmetic 1

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol arithmetic 4 Sections HOLlib Doc