Selected Objects
THM | sub_0 |
m: . nnsub(0;m) = 0 & nnsub(m;0) = m |
THM | less_trans |
m,n,x: . m<n & n<x  m<x |
THM | add1 |
m: . m+1 = m+1  |
THM | less_antisym |
m,n: . (m<n & n<m) |
THM | less_less_suc |
m,n: . (m<n & n<m+1) |
THM | fun_eq_lemma |
'a:S, f:('a  ), x1,x2:'a. f(x1) & f(x2)  x1 = x2 |
THM | less_or |
m,n: . m<n  m+1 n |
THM | or_less |
m,n: . m+1 n  m<n |
THM | less_eq |
m,n: . m<n  m+1 n |
THM | less_suc_eq_cor |
m,n: . m<n & m+1 = n  m+1<n |
THM | less_not_suc |
m,n: . m<n & n = m+1  m+1<n |
THM | less_0_cases |
m: . 0 = m 0<m |
THM | less_cases_imp |
m,n: . m<n & m = n  n<m |
THM | less_cases |
m,n: . m<n n m |
THM | add_inv_0 |
m,n: . m+n = m  n = 0  |
THM | less_eq_add |
m,n: . m m+n |
THM | less_eq_suc_refl |
m: . m m+1 |
THM | less_add_nonzero |
m,n: . n = 0  m<m+n |
THM | less_eq_antisym |
m,n: . (m<n & n m) |
THM | not_less |
m,n: . m<n  n m |
THM | sub_eq_0 |
m,n: . nnsub(m;n) = 0  m n |
THM | add_assoc |
m,n,x: . m+(n+x) = (m+n)+x  |
THM | mult_0 |
m: . m 0 = 0  |
THM | mult_suc |
m,n: . m (n+1) = m+m n  |
THM | mult_right_1 |
m: . m 1 = m  |
THM | mult_clauses |
m,n: .
0 m = 0
& m 0 = 0
& 1 m = m
& m 1 = m
& (m+1) n = m n+n
& m (n+1) = m+m n  |
THM | mult_sym |
m,n: . m n = n m  |
THM | right_add_distrib |
m,n,x: . (m+n) x = m x+n x  |
THM | left_add_distrib |
m,n,x: . x (m+n) = x m+x n  |
THM | mult_assoc |
m,n,x: . m (n x) = (m n) x  |
THM | sub_add |
m,n: . n m  nnsub(m;n)+n = m  |
THM | pre_sub |
m,n: . pre(nnsub(m;n)) = nnsub(pre(m);n) |
THM | add_eq_0 |
m,n: . m+n = 0  m = 0 & n = 0  |
THM | add_inv_0_eq |
m,n: . m+n = m  n = 0  |
THM | pre_suc_eq |
m,n: . 0<n  (m = pre(n)  m+1 = n ) |
THM | inv_pre_eq |
m,n: . 0<m & 0<n  (pre(m) = pre(n)  m = n) |
THM | less_suc_not |
m,n: . m<n  n<m+1 |
THM | add_eq_sub |
m,n,x: . n x  (m+n = x  m = nnsub(x;n)) |
THM | less_mono_add |
m,n,x: . m<n  m+x<n+x |
THM | less_mono_add_inv |
m,n,x: . m+x<n+x  m<n |
THM | less_mono_add_eq |
m,n,x: . m+x<n+x  m<n |
THM | eq_mono_add_eq |
m,n,x: . m+x = n+x  m = n |
THM | less_eq_mono_add_eq |
m,n,x: . m+x n+x  m n |
THM | less_eq_trans |
m,n,x: . m n & n x  m x |
THM | less_eq_less_eq_mono |
m,n,x,q: . m x & n q  m+n x+q |
THM | less_eq_refl |
m: . m m |
THM | less_imp_less_or_eq |
m,n: . m<n  m n |
THM | less_mono_mult |
m,n,x: . m n  m x n x |
THM | right_sub_distrib |
m,n,x: . nnsub(m;n) x = nnsub(m x;n x) |
THM | left_sub_distrib |
m,n,x: . x nnsub(m;n) = nnsub(x m;x n) |
THM | less_add_1 |
m,n: . n<m  ( x: . m = n+x+1 ) |
THM | exp_add |
x,q,n: . exp(n;x+q) = exp(n;x) exp(n;q) |
THM | not_odd_eq_even |
n,m: . n+n+1 = m+m  |
THM | mult_suc_eq |
x,m,n: . n (x+1) = m (x+1)  n = m |
THM | mult_exp_mono |
x,q,n,m: . n exp(q+1;x) = m exp(q+1;x)  n = m |
THM | less_equal_antisym |
n,m: . n m & m n  n = m |
THM | less_add_suc |
m,n: . m<m+n+1 |
THM | zero_less_eq |
n: . 0 n |
THM | less_eq_mono |
n,m: . n+1 m+1  n m |
THM | less_or_eq_add |
n,m: . n<m ( x: . n = x+m ) |
THM | wop |
P:(   ). ( n: . P(n))  ( n: . P(n) & ( m: . m<n  P(m))) |
THM | gen_induction |
P:(   ). P(0) & ( n: . ( m: . m<n  P(m))  P(n))  ( n: . P(n)) |
THM | da |
k,n: . 0<n  ( r,q: . k = q n+r & r<n) |
THM | mod_one |
k: . nmod(k;0+1) = 0 |
THM | div_less_eq |
n: . 0<n  ( k: . ndiv(k;n) k) |
THM | ndiv_unique |
n,k,q: . ( r: . k = q n+r & r<n)  ndiv(k;n) = q |
THM | mod_unique |
n,k,r: . ( q: . k = q n+r & r<n)  nmod(k;n) = r |
THM | div_mult |
n,r: . r<n  ( q: . ndiv(q n+r;n) = q) |
THM | less_mod |
n,k: . k<n  nmod(k;n) = k |
THM | mod_eq_0 |
n: . 0<n  ( k: . nmod(k n;n) = 0) |
THM | zero_mod |
n: . 0<n  nmod(0;n) = 0 |
THM | zero_div |
n: . 0<n  ndiv(0;n) = 0 |
THM | mod_mult |
n,r: . r<n  ( q: . nmod(q n+r;n) = r) |
THM | mod_times |
n: . 0<n  ( q,r: . nmod(q n+r;n) = nmod(r;n)) |
THM | mod_plus |
n: . 0<n  ( j,k: . nmod(nmod(j;n)+nmod(k;n);n) = nmod(j+k;n)) |
THM | mod_mod |
n: . 0<n  ( k: . nmod(nmod(k;n);n) = nmod(k;n)) |
THM | sub_mono_eq |
n,m: . nnsub(n+1;m+1) = nnsub(n;m) |
THM | sub_plus |
a,b,c: . nnsub(a;b+c) = nnsub(nnsub(a;b);c) |
THM | inv_pre_less |
m: . 0<m  ( n: . pre(m)<pre(n)  m<n) |
THM | inv_pre_less_eq |
n: . 0<n  ( m: . pre(m) pre(n)  m n) |
THM | sub_less_eq |
n,m: . nnsub(n;m) n |
THM | sub_eq_eq_0 |
m,n: . nnsub(m;n) = m  m = 0 n = 0  |
THM | sub_less_0 |
n,m: . m<n  0<nnsub(n;m) |
THM | sub_less_or |
m,n: . n<m  n nnsub(m;1) |
THM | less_sub_add_less |
n,m,i: . i<nnsub(n;m)  i+m<n |
THM | times2 |
n: . 2 n = n+n  |
THM | less_mult_mono |
m,i,n: . (n+1) m<(n+1) i  m<i |
THM | mult_mono_eq |
m,i,n: . (n+1) m = (n+1) i  m = i |
THM | add_sub |
a,c: . nnsub(a+c;c) = a |
THM | less_eq_add_sub |
c,b: . c b  ( a: . nnsub(a+b;c) = a+nnsub(b;c)) |
THM | sub_equal_0 |
c: . nnsub(c;c) = 0 |
THM | less_eq_sub_less |
a,b: . b a  ( c: . nnsub(a;b)<c  a<b+c) |
THM | not_suc_less_eq |
n,m: . n+1 m  m n |
THM | sub_sub |
b,c: . c b  ( a: . nnsub(a;nnsub(b;c)) = nnsub(a+c;b)) |
THM | less_imp_less_add |
n,m: . n<m  ( x: . n<m+x) |
THM | less_eq_imp_less_suc |
n,m: . n m  n<m+1 |
THM | sub_less_eq_add |
m,x: . m x  ( n: . nnsub(x;m) n  x m+n) |
THM | sub_cancel |
x,n,m: . n x & m x  (nnsub(x;n) = nnsub(x;m)  n = m) |
THM | cancel_sub |
x,n,m: . x n & x m  (nnsub(n;x) = nnsub(m;x)  n = m) |