Definitions hol combin Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
assertDef b == if b True else False fi
Thm* b:b  Prop
hequalDef equal == x:'ay:'ax = y
Thm* 'a:S. equal  ('a  'a  hbool)
hfunDef 'a  'b == 'a'b
Thm* 'a,'b:S. ('a  'b S
hkDef k == x:'ay:'bx
Thm* 'a,'b:S. k  ('a  'b  'a)
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
boolifthenelseassertsetapplyfunctionuniverse
memberpropfalsetrueallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol combin Sections HOLlib Doc