| Some definitions of interest. |
|
his_list_rep | Def is_list_rep
Def == r:(  'a) .  f:  'a
Def == r:(  'a) .    n:
Def == r:(  'a) .    (r
Def == r:(  'a) .    = < m: . if m< n then f(m) else @ x:'a. true fi ,n>) |
| | Thm* 'a:S. is_list_rep (hprod((hnum  'a); hnum)  hbool) |
|
type_definition | Def type_definition('a;'b;P;rep)
Def == ( x',x'':'b. rep(x') = rep(x'') 'a  x' = x'')
Def == & ( x:'a. (P(x))  ( x':'b. x = rep(x'))) |
| | Thm* 'a,'b:Type, P:('a  ), rep:('b 'a). type_definition('a;'b;P;rep) Prop |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hrep_list | Def rep_list == l:'a List. rep_list('a;l) |
| | Thm* 'a:S. rep_list (hlist('a)  hprod((hnum  'a); hnum)) |
|
label | Def t ...$L == t |
|
rep_list | Def rep_list('a;l) == < n: . if n< ||l|| then l[n] else arb('a) fi ,||l||> |
| | Thm* 'a:S, l:'a List. rep_list('a;l) (  'a)  |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |