Definitions hol list 1 Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
his_list_repDef is_list_rep
Def == r:('a)f:'a
Def == r:('a)n:
Def == r:('a)(r
Def == r:('a)= <m:. if m<n then f(m) else @x:'a. true fi ,n>)
Thm* 'a:S. is_list_rep  (hprod((hnum  'a); hnum)  hbool)
bchooseDef @x:'ap(x) == @x:'ap(x)
Thm* 'a:S, p:('a). (@x:'ap(x))  'a
assertDef b == if b True else False fi
Thm* b:b  Prop
rep_listDef rep_list('a;l) == <n:. if n<||l|| then l[n] else arb('a) fi ,||l||>
Thm* 'a:S, l:'a List. rep_list('a;l ('a)
bifDef bif(bbx.x(bx); by.y(by)) == if b x(*) else y(x.x) fi
Thm* A:Type, b:x:(bA), y:((b)A). bif(bbx.x(bx); by.y(by))  A
lt_intDef i<j == if i<j true ; false fi
Thm* i,j:. (i<j 
natDef  == {i:| 0i }
Thm*   Type
Thm*   S
stypeDef S == {T:Type| x:T. True }
Thm* S  Type{2}
tlambdaDef (x:Tb(x))(x) == b(x)

About:
pairproductlistboolbfalsebtrueifthenelseassertint
natural_numberlesssetlambdaapply
functionuniverseaxiommemberpropfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions hol list 1 Sections HOLlib Doc