| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| his_list_rep | Def is_list_rep
Def == r:(  'a) .  f:  'a
Def == r:(  'a) .    n:
Def == r:(  'a) .    (r
Def == r:(  'a) .    = < m: . if m< n then f(m) else @ x:'a. true fi ,n>) |
| | | Thm* 'a:S. is_list_rep (hprod((hnum  'a); hnum)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| bequal | Def x = y ==  (x = y T) |
| | | Thm* T:Type, x,y:T. (x = y)  |
|
| habs_list | Def abs_list == r:(  'a) . @a:'a List. (r = rep_list('a;a)) |
| | | Thm* 'a:S. abs_list (hprod((hnum  'a); hnum)  hlist('a)) |
|
| hand | Def and == p: . q: . p q |
| | | Thm* and (hbool  hbool  hbool) |
|
| hbool | Def hbool ==  |
| | | Thm* hbool S |
|
| hfun | Def 'a  'b == 'a 'b |
| | | Thm* 'a,'b:S. ('a  'b) S |
|
| hlist | Def hlist('a) == 'a List |
| | | Thm* 'a:S. hlist('a) S |
|
| hnum | Def hnum ==  |
| | | Thm* hnum S |
|
| hprod | Def hprod('a; 'b) == 'a 'b |
| | | Thm* 'a,'b:S. hprod('a; 'b) S |
|
| hrep_list | Def rep_list == l:'a List. rep_list('a;l) |
| | | Thm* 'a:S. rep_list (hlist('a)  hprod((hnum  'a); hnum)) |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |