| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hcons | Def cons == x:'a. l:'a List. cons(x; l) |
| | | Thm* 'a:S. cons ('a  hlist('a)  hlist('a)) |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| hhd | Def hd == l:'a List. if null(l) then arb('a) else head(l) fi |
| | | Thm* 'a:S. hd (hlist('a)  'a) |
|
| hlist | Def hlist('a) == 'a List |
| | | Thm* 'a:S. hlist('a) S |
|
| mt | Def mt(l) == Case of l; nil True ; a.as' False |
| | | Thm* 'a:Type{i}, l:'a List. mt(l) Prop{1} |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |