| | Some definitions of interest. |
|
| hall | Def all == p:'a  .  x:'a. (p(x)) |
| | | Thm* 'a:S. all (('a  hbool)  hbool) |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| hcons | Def cons == x:'a. l:'a List. cons(x; l) |
| | | Thm* 'a:S. cons ('a  hlist('a)  hlist('a)) |
|
| hequal | Def equal == x:'a. y:'a. x = y |
| | | Thm* 'a:S. equal ('a  'a  hbool) |
|
| himplies | Def implies == p: . q: . p  q |
| | | Thm* implies (hbool  hbool  hbool) |
|
| hlist | Def hlist('a) == 'a List |
| | | Thm* 'a:S. hlist('a) S |
|
| hnot | Def not == p: .  p |
| | | Thm* not (hbool  hbool) |
|
| stype | Def S == {T:Type| x:T. True } |
| | | Thm* S Type{2} |
|
| tlambda | Def ( x:T. b(x))(x) == b(x) |