| Some definitions of interest. |
|
hall | Def all == p:'a  .  x:'a. (p(x)) |
| | Thm* 'a:S. all (('a  hbool)  hbool) |
|
hexists_unique | Def exists_unique == p:'a  . b_exists_unique('a;x.p(x)) |
| | Thm* 'a:S. exists_unique (('a  hbool)  hbool) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
hequal | Def equal == x:'a. y:'a. x = y |
| | Thm* 'a:S. equal ('a  'a  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
hand | Def and == p: . q: . p q |
| | Thm* and (hbool  hbool  hbool) |
|
hcons | Def cons == x:'a. l:'a List. cons(x; l) |
| | Thm* 'a:S. cons ('a  hlist('a)  hlist('a)) |
|
hfun | Def 'a  'b == 'a 'b |
| | Thm* 'a,'b:S. ('a  'b) S |
|
hlist | Def hlist('a) == 'a List |
| | Thm* 'a:S. hlist('a) S |
|
hnil | Def nil == nil |
| | Thm* 'a:S. nil hlist('a) |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |