| Some definitions of interest. |
|
his_list_rep | Def is_list_rep
Def == r:(  'a) .  f:  'a
Def == r:(  'a) .    n:
Def == r:(  'a) .    (r
Def == r:(  'a) .    = < m: . if m< n then f(m) else @ x:'a. true fi ,n>) |
| | Thm* 'a:S. is_list_rep (hprod((hnum  'a); hnum)  hbool) |
|
bequal | Def x = y ==  (x = y T) |
| | Thm* T:Type, x,y:T. (x = y)  |
|
habs_list | Def abs_list == r:(  'a) . @a:'a List. (r = rep_list('a;a)) |
| | Thm* 'a:S. abs_list (hprod((hnum  'a); hnum)  hlist('a)) |
|
hrep_list | Def rep_list == l:'a List. rep_list('a;l) |
| | Thm* 'a:S. rep_list (hlist('a)  hprod((hnum  'a); hnum)) |
|
pre | Def pre(n) == if n= 0 then 0 else n-1 fi |
| | Thm* n: . pre(n)  |
|
rep_list | Def rep_list('a;l) == < n: . if n< ||l|| then l[n] else arb('a) fi ,||l||> |
| | Thm* 'a:S, l:'a List. rep_list('a;l) (  'a)  |
|
bif | Def bif(b; bx.x(bx); by.y(by)) == if b x(*) else y( x.x) fi |
| | Thm* A:Type, b: , x:(b A), y:(( b) A). bif(b; bx.x(bx); by.y(by)) A |
|
hlist | Def hlist('a) == 'a List |
| | Thm* 'a:S. hlist('a) S |
|
hnum | Def hnum ==  |
| | Thm* hnum S |
|
iso_pair | Def iso_pair('a;'b;P;rep;abs)
Def == ( r:'b. abs(r) = (@a:'a. (r = rep(a)))) & type_definition('b;'a;P;rep) |
| | Thm* 'a,'b:S, P:('b  ), rep:('a 'b), abs:('b 'a).
Thm* iso_pair('a;'b;P;rep;abs) Prop |
|
label | Def t ...$L == t |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
| | Thm* S |
|
pi1 | Def 1of(t) == t.1 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 1of(p) A |
|
pi2 | Def 2of(t) == t.2 |
| | Thm* A:Type, B:(A Type), p:(a:A B(a)). 2of(p) B(1of(p)) |
|
stype | Def S == {T:Type| x:T. True } |
| | Thm* S Type{2} |
|
tlambda | Def ( x:T. b(x))(x) == b(x) |