hol num Sections HOLlib Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def equal == x:'ay:'ax = y

is mentioned by

Thm* all(m:hnum. all(n:hnum. implies(equal(suc(m),suc(n)),equal(m,n))))[hinv_suc]
Thm* all(n:hnum. not(equal(suc(n),0)))[hnot_suc]
Thm* all(m:hnum. equal(suc(m),abs_num(suc_rep(rep_num(m)))))[hsuc_def]
Thm* equal(0,abs_num(zero_rep))[hzero_def]
Thm* and
Thm* (all(a:hnum. equal(abs_num(rep_num(a)),a))
Thm* ,all(r:hind. equal(is_num_rep(r),equal(rep_num(abs_num(r)),r))))
[hnum_iso_def]
Thm* all
Thm* (m:hind. equal
Thm* (m:hind. (is_num_rep(m)
Thm* (m:hind. ,all
Thm* (m:hind. ,(P:hind  hbool. implies
Thm* (m:hind. ,(P:hind  hbool. (and
Thm* (m:hind. ,(P:hind  hbool. ((P(zero_rep)
Thm* (m:hind. ,(P:hind  hbool. (,all(n:hind. implies(P(n),P(suc_rep(n)))))
Thm* (m:hind. ,(P:hind  hbool. ,P(m)))))
[his_num_rep_wd]
Thm* equal(zero_rep,select(x:hind. all(y:hind. not(equal(x,suc_rep(y))))))[hzero_rep_def]
Thm* equal(suc_rep,select(f:hind  hind. and(one_one(f),not(onto(f)))))[hsuc_rep_def]

In prior sections: hol bool

Try larger context: HOLlib IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

hol num Sections HOLlib Doc